Solve [tex]\frac{4}{x}+1=y+13[/tex] for [tex]x[/tex].

A. [tex]x=\frac{4}{y+12}[/tex]
B. [tex]x=\frac{12}{y}[/tex]
C. [tex]x=\frac{y+12}{4}[/tex]
D. [tex]x=\frac{y+12}{14}[/tex]



Answer :

To solve the equation [tex]\(\frac{4}{x} + 1 = y + 13\)[/tex] for [tex]\(x\)[/tex], follow these steps:

1. Isolate [tex]\(\frac{4}{x}\)[/tex]:
[tex]\[ \frac{4}{x} = y + 13 - 1 \][/tex]
Simplifying the right-hand side:
[tex]\[ \frac{4}{x} = y + 12 \][/tex]

2. Solve for [tex]\(x\)[/tex]:
Multiply both sides of the equation by [tex]\(x\)[/tex] to get rid of the fraction:
[tex]\[ 4 = x \cdot (y + 12) \][/tex]

3. Next, isolate [tex]\(x\)[/tex] by dividing both sides by [tex]\(y + 12\)[/tex]:
[tex]\[ x = \frac{4}{y + 12} \][/tex]

Comparing this result with the given multiple-choice answers:
[tex]\[ \begin{align*} \text{Choice 1:} &\quad x = \frac{4}{y + 12} \\ \text{Choice 2:} &\quad x = \frac{12}{y} \\ \text{Choice 3:} &\quad x = \frac{y + 12}{4} \\ \text{Choice 4:} &\quad x = \frac{y + 12}{14} \end{align*} \][/tex]

The correct answer is:
[tex]\[ x = \frac{4}{y + 12} \][/tex]

So the correct option is the first one:
Option 1: [tex]\(x = \frac{4}{y + 12}\)[/tex].