Distribute to create an equivalent expression with the fewest symbols possible.

[tex]\[ 6(a + 2b + 3c) = \][/tex]
[tex]\[ \boxed{\phantom{x}} \][/tex]



Answer :

To solve the given expression [tex]\( 6(a + 2b + 3c) \)[/tex] by distributing the coefficient 6 to each term inside the parentheses, follow these steps:

1. Identify the terms inside the parentheses:
[tex]\[ a + 2b + 3c \][/tex]

2. Distribute the 6 to each term:
[tex]\[ 6 \cdot a + 6 \cdot 2b + 6 \cdot 3c \][/tex]

3. Multiply the constants:
[tex]\[ 6 \cdot a = 6a \][/tex]
[tex]\[ 6 \cdot 2b = 12b \][/tex]
[tex]\[ 6 \cdot 3c = 18c \][/tex]

4. Combine all the terms:
[tex]\[ 6a + 12b + 18c \][/tex]

Therefore, the equivalent expression with the fewest symbols possible is:
[tex]\[ 6(a + 2b + 3c) = 6a + 12b + 18c \][/tex]