Match each inequality to the number line that represents its solution.

[tex]\[ x - 99 \leq -104 \][/tex]
[tex]\[ x - 51 \leq -43 \][/tex]
[tex]\[ 150 + x \leq 144 \][/tex]
[tex]\[ 75 \ \textless \ 69 - x \][/tex]

[tex]\[\longleftrightarrow \square \][/tex]
[tex]\[\square \][/tex]



Answer :

Certainly! Let's solve each inequality step by step and match them to the number line that represents their solution.

### Inequality 1: [tex]\( x - 99 \leq -104 \)[/tex]

1. Add 99 to both sides of the inequality:
[tex]\[ x - 99 + 99 \leq -104 + 99 \][/tex]
[tex]\[ x \leq -5 \][/tex]

The solution [tex]\( x \leq -5 \)[/tex] represents all values of [tex]\( x \)[/tex] that are less than or equal to [tex]\(-5\)[/tex].

### Inequality 2: [tex]\( x - 51 \leq -43 \)[/tex]

1. Add 51 to both sides of the inequality:
[tex]\[ x - 51 + 51 \leq -43 + 51 \][/tex]
[tex]\[ x \leq 8 \][/tex]

The solution [tex]\( x \leq 8 \)[/tex] represents all values of [tex]\( x \)[/tex] that are less than or equal to [tex]\(8\)[/tex].

### Inequality 3: [tex]\( 150 + x \leq 144 \)[/tex]

1. Subtract 150 from both sides of the inequality:
[tex]\[ 150 + x - 150 \leq 144 - 150 \][/tex]
[tex]\[ x \leq -6 \][/tex]

The solution [tex]\( x \leq -6 \)[/tex] represents all values of [tex]\( x \)[/tex] that are less than or equal to [tex]\(-6\)[/tex].

### Inequality 4: [tex]\( 75 < 69 - x \)[/tex]

1. Add [tex]\( x \)[/tex] to both sides of the inequality (to isolate [tex]\( x \)[/tex] on one side):
[tex]\[ 75 + x < 69 \][/tex]

2. Subtract 75 from both sides:
[tex]\[ x < 69 - 75 \][/tex]
[tex]\[ x < -6 \][/tex]

The solution [tex]\( x < -6 \)[/tex] represents all values of [tex]\( x \)[/tex] that are strictly less than [tex]\(-6\)[/tex].

### Summary and Matching to the Number Line

Given the solutions to each inequality:
- [tex]\( x \leq -5 \)[/tex]
- [tex]\( x \leq 8 \)[/tex]
- [tex]\( x \leq -6 \)[/tex]
- [tex]\( x < -6 \)[/tex]

We can match each inequality to its respective solution on the number line:

1. [tex]\( x - 99 \leq -104 \)[/tex]: This corresponds to [tex]\( x \leq -5 \)[/tex].
2. [tex]\( x - 51 \leq -43 \)[/tex]: This corresponds to [tex]\( x \leq 8 \)[/tex].
3. [tex]\( 150 + x \leq 144 \)[/tex]: This corresponds to [tex]\( x \leq -6 \)[/tex].
4. [tex]\( 75 < 69 - x \)[/tex]: This corresponds to [tex]\( x < -6 \)[/tex].

Thus, the inequalities and their solutions on the number line can be represented as follows:

[tex]\[ \begin{aligned} & x - 99 \leq -104 &\quad \text{corresponds to} \quad x \leq -5 \\ & x - 51 \leq -43 &\quad \text{corresponds to} \quad x \leq 8 \\ & 150 + x \leq 144 &\quad \text{corresponds to} \quad x \leq -6 \\ & 75 < 69 - x &\quad \text{corresponds to} \quad x < -6 \\ \end{aligned} \][/tex]