Answer :

To solve the given equation
[tex]\[ \frac{2}{3} = \log\left( \sqrt[3]{w^2 - 10w} \right), \][/tex]
we will follow a step-by-step algebraic approach.

### Step 1: Rewrite the equation in exponential form
Recall that the logarithmic form [tex]\( a = \log_b c \)[/tex] can be rewritten as [tex]\( b^a = c \)[/tex]. Since the base of the logarithm is not provided explicitly, it is typically assumed to be 10.

Thus,
[tex]\[ \frac{2}{3} = \log\left( \sqrt[3]{w^2 - 10w} \right) \][/tex]
is equivalent to
[tex]\[ 10^{\frac{2}{3}} = \sqrt[3]{w^2 - 10w}. \][/tex]

### Step 2: Remove the cube root by cubing both sides of the equation
Cubing both sides to eliminate the cube root gives:
[tex]\[ \left(10^{\frac{2}{3}}\right)^3 = \left( \sqrt[3]{w^2 - 10w} \right)^3. \][/tex]

Simplifying both sides, we get:
[tex]\[ 10^2 = w^2 - 10w. \][/tex]

So, we have:
[tex]\[ 100 = w^2 - 10w. \][/tex]

### Step 3: Rearrange into a standard quadratic equation form
Rearrange the equation to look like a standard quadratic equation:
[tex]\[ w^2 - 10w - 100 = 0. \][/tex]

### Step 4: Solve the quadratic equation using the quadratic formula
Recall the quadratic formula, [tex]\( w = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \)[/tex], where in our equation [tex]\( a = 1 \)[/tex], [tex]\( b = -10 \)[/tex], and [tex]\( c = -100 \)[/tex].

Substituting these values in, we get:
[tex]\[ w = \frac{10 \pm \sqrt{(-10)^2 - 4 \cdot 1 \cdot (-100)}}{2 \cdot 1} \][/tex]
[tex]\[ w = \frac{10 \pm \sqrt{100 + 400}}{2} \][/tex]
[tex]\[ w = \frac{10 \pm \sqrt{500}}{2} \][/tex]
[tex]\[ w = \frac{10 \pm 10\sqrt{5}}{2} \][/tex]
[tex]\[ w = 5 \pm 5\sqrt{5}. \][/tex]

### Step 5: Simplify the solutions
So, the simplified solutions are:
[tex]\[ w = 5 + 5\sqrt{5} \quad \text{and} \quad w = 5 - 5\sqrt{5}. \][/tex]

Examining these values numerically,
[tex]\[ 5 + 5\sqrt{5} \approx 16.1803398874989 \][/tex]
[tex]\[ 5 - 5\sqrt{5} \approx -6.18033988749895. \][/tex]

### Conclusion
Thus, the solutions to the equation [tex]\(\frac{2}{3} = \log(\sqrt[3]{w^2 - 10w})\)[/tex] are approximately:
[tex]\[ w \approx -6.18033988749895 \quad \text{and} \quad w \approx 16.1803398874989. \][/tex]