Solve for [tex]$v$[/tex], where [tex]$v$[/tex] is a real number.

[tex]\sqrt{12v - 27} = v[/tex]

If there is more than one solution, separate them with commas. If there is no solution, click on "No solution".

[tex]v = \square[/tex]

No solution



Answer :

To solve the equation [tex]\( \sqrt{12v - 27} = v \)[/tex], let's proceed step-by-step.

1. Square both sides to eliminate the square root:
[tex]\[ (\sqrt{12v - 27})^2 = v^2 \][/tex]
This simplifies to:
[tex]\[ 12v - 27 = v^2 \][/tex]

2. Rearrange the equation to standard quadratic form:
[tex]\[ v^2 - 12v + 27 = 0 \][/tex]

3. Solve the quadratic equation using the quadratic formula:
The quadratic formula is given by:
[tex]\[ v = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \][/tex]
For our equation [tex]\( v^2 - 12v + 27 = 0 \)[/tex], the coefficients are:
[tex]\[ a = 1, \quad b = -12, \quad c = 27 \][/tex]
Substituting these into the quadratic formula we get:
[tex]\[ v = \frac{12 \pm \sqrt{(-12)^2 - 4 \cdot 1 \cdot 27}}{2 \cdot 1} \][/tex]
Simplify inside the square root:
[tex]\[ v = \frac{12 \pm \sqrt{144 - 108}}{2} \][/tex]
[tex]\[ v = \frac{12 \pm \sqrt{36}}{2} \][/tex]
[tex]\[ v = \frac{12 \pm 6}{2} \][/tex]

4. Calculate the two possible solutions:
[tex]\[ v_1 = \frac{12 + 6}{2} = \frac{18}{2} = 9 \][/tex]
[tex]\[ v_2 = \frac{12 - 6}{2} = \frac{6}{2} = 3 \][/tex]

Therefore, the solutions to the equation [tex]\( \sqrt{12v - 27} = v \)[/tex] are:
[tex]\[ v = 3, 9 \][/tex]