Answer :
To solve the given sets of simultaneous equations step-by-step, we arrive at the following values for each variable:
1. For the equations [tex]\(-7c + 3d = 26\)[/tex] and [tex]\(c + 6d = -23\)[/tex]:
[tex]\[ \begin{cases} -7c + 3d = 26 \\ c + 6d = -23 \end{cases} \][/tex]
Solving these, we find:
[tex]\[ c = -5, \quad d = -3 \][/tex]
2. For the equations [tex]\(-7e + 6f = 24\)[/tex] and [tex]\(3e + f = -21\)[/tex]:
[tex]\[ \begin{cases} -7e + 6f = 24 \\ 3e + f = -21 \end{cases} \][/tex]
Solving these, we find:
[tex]\[ e = -6, \quad f = -3 \][/tex]
3. For the equations [tex]\(-7x + 5y = -7\)[/tex] and [tex]\(x + 7y = -53\)[/tex]:
[tex]\[ \begin{cases} -7x + 5y = -7 \\ x + 7y = -53 \end{cases} \][/tex]
Solving these, we find:
[tex]\[ x = -4, \quad y = -7 \][/tex]
4. For the equations [tex]\(5a + 2b = 21\)[/tex] and [tex]\(-3a - 5b = -5\)[/tex]:
[tex]\[ \begin{cases} 5a + 2b = 21 \\ -3a - 5b = -5 \end{cases} \][/tex]
Solving these, we find:
[tex]\[ a = 5, \quad b = -2 \][/tex]
5. For the equations [tex]\(6v + w = -4\)[/tex] and [tex]\(-6v + 5w = 16\)[/tex]:
[tex]\[ \begin{cases} 6v + w = -4 \\ -6v + 5w = 16 \end{cases} \][/tex]
Solving these, we find:
[tex]\[ v = -1, \quad w = 2 \][/tex]
6. For the equations [tex]\(-3g + h = -6\)[/tex] and [tex]\(6g - 5h = 21\)[/tex]:
[tex]\[ \begin{cases} -3g + h = -6 \\ 6g - 5h = 21 \end{cases} \][/tex]
Solving these, we find:
[tex]\[ g = 1, \quad h = -3 \][/tex]
The results derived from these equations are:
[tex]\[ \begin{array}{cccc} c = -5 & \quad & e = -6 & \quad \\ d = -3 & \quad & f = -3 & \quad \\ x = -4 & \quad & a = 5 & \quad \\ y = -7 & \quad & b = -2 & \quad \\ v = -1 & \quad & g = 1 & \quad \\ w = 2 & \quad & h = -3 & \quad \end{array} \][/tex]
1. For the equations [tex]\(-7c + 3d = 26\)[/tex] and [tex]\(c + 6d = -23\)[/tex]:
[tex]\[ \begin{cases} -7c + 3d = 26 \\ c + 6d = -23 \end{cases} \][/tex]
Solving these, we find:
[tex]\[ c = -5, \quad d = -3 \][/tex]
2. For the equations [tex]\(-7e + 6f = 24\)[/tex] and [tex]\(3e + f = -21\)[/tex]:
[tex]\[ \begin{cases} -7e + 6f = 24 \\ 3e + f = -21 \end{cases} \][/tex]
Solving these, we find:
[tex]\[ e = -6, \quad f = -3 \][/tex]
3. For the equations [tex]\(-7x + 5y = -7\)[/tex] and [tex]\(x + 7y = -53\)[/tex]:
[tex]\[ \begin{cases} -7x + 5y = -7 \\ x + 7y = -53 \end{cases} \][/tex]
Solving these, we find:
[tex]\[ x = -4, \quad y = -7 \][/tex]
4. For the equations [tex]\(5a + 2b = 21\)[/tex] and [tex]\(-3a - 5b = -5\)[/tex]:
[tex]\[ \begin{cases} 5a + 2b = 21 \\ -3a - 5b = -5 \end{cases} \][/tex]
Solving these, we find:
[tex]\[ a = 5, \quad b = -2 \][/tex]
5. For the equations [tex]\(6v + w = -4\)[/tex] and [tex]\(-6v + 5w = 16\)[/tex]:
[tex]\[ \begin{cases} 6v + w = -4 \\ -6v + 5w = 16 \end{cases} \][/tex]
Solving these, we find:
[tex]\[ v = -1, \quad w = 2 \][/tex]
6. For the equations [tex]\(-3g + h = -6\)[/tex] and [tex]\(6g - 5h = 21\)[/tex]:
[tex]\[ \begin{cases} -3g + h = -6 \\ 6g - 5h = 21 \end{cases} \][/tex]
Solving these, we find:
[tex]\[ g = 1, \quad h = -3 \][/tex]
The results derived from these equations are:
[tex]\[ \begin{array}{cccc} c = -5 & \quad & e = -6 & \quad \\ d = -3 & \quad & f = -3 & \quad \\ x = -4 & \quad & a = 5 & \quad \\ y = -7 & \quad & b = -2 & \quad \\ v = -1 & \quad & g = 1 & \quad \\ w = 2 & \quad & h = -3 & \quad \end{array} \][/tex]