Leee01
Answered

Solve the area formula, [tex]A = lw[/tex], for [tex]l[/tex].

A. [tex]I = A - w[/tex]
B. [tex]I = Aw[/tex]
C. [tex]I = \frac{A}{CB}[/tex]
D. [tex]I = \frac{W}{A}[/tex]



Answer :

Sure, let's solve the area formula [tex]\( A = l \cdot w \)[/tex] for [tex]\( l \)[/tex].

Step-by-Step Solution:

1. Start with the given formula:
[tex]\[ A = l \cdot w \][/tex]

2. Rearrange the formula to solve for [tex]\( l \)[/tex].
To isolate [tex]\( l \)[/tex], you need to divide both sides of the equation by [tex]\( w \)[/tex]:
[tex]\[ l = \frac{A}{w} \][/tex]

So, the length [tex]\( l \)[/tex] in terms of area [tex]\( A \)[/tex] and width [tex]\( w \)[/tex] is given by:
[tex]\[ I = l = \frac{A}{w} \][/tex]

This matches the correct choice from your provided list:
[tex]\[ I = \frac{A}{w} \][/tex]

Thus, the correct answer is:
[tex]\[ I = \frac{A}{w} \][/tex]

This completes the solution to rearranging the area formula [tex]\( A = l \cdot w \)[/tex] for [tex]\( l \)[/tex].