What is the value of [tex]\tan \left(60^{\circ}\right)[/tex]?

A. [tex]\frac{1}{2}[/tex]
B. [tex]\sqrt{3}[/tex]
C. [tex]\frac{\sqrt{3}}{2}[/tex]
D. [tex]\frac{1}{\sqrt{3}}[/tex]



Answer :

To find the value of [tex]\(\tan(60^\circ)\)[/tex], we need to use trigonometric identities and properties.

Firstly, recall the definition of the tangent function in terms of a right-angled triangle:
[tex]\[ \tan(\theta) = \frac{\text{opposite}}{\text{adjacent}} \][/tex]

For the specific angle of [tex]\(60^\circ\)[/tex], we use a special right triangle, the 30-60-90 triangle, where the side lengths are in the ratio [tex]\(1: \sqrt{3}: 2\)[/tex]. The sides opposite the [tex]\(30^\circ\)[/tex], [tex]\(60^\circ\)[/tex], and [tex]\(90^\circ\)[/tex] angles have lengths, respectively, of [tex]\(1\)[/tex], [tex]\(\sqrt{3}\)[/tex], and [tex]\(2\)[/tex].

Considering the angle [tex]\(60^\circ\)[/tex]:
- The side opposite [tex]\(60^\circ\)[/tex] is [tex]\(\sqrt{3}\)[/tex].
- The side adjacent to [tex]\(60^\circ\)[/tex] is [tex]\(1\)[/tex].

Thus, we have:
[tex]\[ \tan(60^\circ) = \frac{\text{opposite}}{\text{adjacent}} = \frac{\sqrt{3}}{1} = \sqrt{3} \][/tex]

Therefore, the value of [tex]\(\tan(60^\circ)\)[/tex] is [tex]\(\sqrt{3}\)[/tex].

The correct choice from the given options is:

[tex]\[ \sqrt{3} \][/tex]