Sure! Let's solve the expression [tex]\( w^2 + 3w - 11 \)[/tex] when [tex]\( w = -5 \)[/tex] step-by-step:
1. Start with the expression:
[tex]\[ w^2 + 3w - 11 \][/tex]
2. Substitute [tex]\( w = -5 \)[/tex] into the expression:
[tex]\[ (-5)^2 + 3(-5) - 11 \][/tex]
3. Calculate the square of [tex]\(-5\)[/tex]:
[tex]\[ (-5)^2 = 25 \][/tex]
4. Multiply 3 by [tex]\(-5\)[/tex]:
[tex]\[ 3(-5) = -15 \][/tex]
5. Substitute these values back into the expression:
[tex]\[ 25 - 15 - 11 \][/tex]
6. Perform the subtraction:
[tex]\[ 25 - 15 = 10 \][/tex]
[tex]\[ 10 - 11 = -1 \][/tex]
So, the value of the expression [tex]\( w^2 + 3w - 11 \)[/tex] when [tex]\( w = -5 \)[/tex] is [tex]\(-1\)[/tex].
Therefore, the correct answer is:
D. -1