Remmi wrote the equation of the line [tex]y=\frac{1}{3}(x+2)[/tex]. He solved for [tex]x[/tex] and got [tex]x=3y-2[/tex]. Which of the following is an equivalent equation for [tex]x[/tex]?

A. [tex]x=y-\frac{11}{3}[/tex]
B. [tex]x=y+\frac{7}{3}[/tex]
C. [tex]x=3\left(y-\frac{2}{3}\right)[/tex]
D. [tex]x=3\left(y+\frac{2}{3}\right)[/tex]



Answer :

Sure! Let's start by solving the equation [tex]\( y = \frac{1}{3}(x + 2) \)[/tex] step by step to find [tex]\( x \)[/tex] in terms of [tex]\( y \)[/tex]:

1. Start with the given equation:
[tex]\[ y = \frac{1}{3}(x + 2) \][/tex]

2. Multiply both sides by 3 to eliminate the fraction:
[tex]\[ 3y = x + 2 \][/tex]

3. Solve for [tex]\( x \)[/tex] by isolating it on one side of the equation:
[tex]\[ x = 3y - 2 \][/tex]

Now, let's compare [tex]\( x = 3y - 2 \)[/tex] with the given options to find which is equivalent:

1. Option 1: [tex]\( x = y - \frac{11}{3} \)[/tex]

2. Option 2: [tex]\( x = y + \frac{7}{3} \)[/tex]

3. Option 3: [tex]\( x = 3 \left( y - \frac{2}{3} \)[/tex] \)

Simplify this option:
[tex]\[ x = 3 \left( y - \frac{2}{3} \right) = 3y - 2 \][/tex]
This matches our calculated equation.

4. Option 4: [tex]\( x = 3 \left( y + \frac{2}{3} \)[/tex]

Let's box the correct option to make it clear:

[tex]\[ \boxed{x = 3\left(y - \frac{2}{3}\right)} \][/tex]

The correct solution is:
[tex]\( x = 3\left(y - \frac{2}{3}\right) \)[/tex]