Remmi wrote the equation of the line [tex]$y=\frac{1}{3}(x+2)$[/tex]. He solved for [tex]$x$[/tex] and got [tex][tex]$x=3y-2$[/tex][/tex]. Which of the following is an equivalent equation for [tex]$x$[/tex]?

A. [tex]x=y-\frac{11}{3}[/tex]
B. [tex]x=y+\frac{7}{3}[/tex]
C. [tex]x=3\left(y-\frac{2}{3}\right)[/tex]
D. [tex]x=3\left(y+\frac{2}{3}\right)[/tex]



Answer :

To determine which equation is equivalent to [tex]\( x = 3y - 2 \)[/tex], let's manipulate the options provided and see which one results in [tex]\( x = 3y - 2 \)[/tex].

1. Option: [tex]\( x = y - \frac{11}{3} \)[/tex]

Simplifying this, we have:
[tex]\[ x = y - \frac{11}{3} \][/tex]
This equation does not seem to directly match [tex]\( x = 3y - 2 \)[/tex].

2. Option: [tex]\( x = y + \frac{7}{3} \)[/tex]

Simplifying this, we have:
[tex]\[ x = y + \frac{7}{3} \][/tex]
This equation does not seem to directly match [tex]\( x = 3y - 2 \)[/tex].

3. Option: [tex]\( x = 3\left( y - \frac{2}{3} \right) \)[/tex]

Simplifying this, we handle the distribution:
[tex]\[ x = 3\left( y - \frac{2}{3} \right) \][/tex]
Distribute the 3:
[tex]\[ x = 3y - 3 \cdot \frac{2}{3} \][/tex]
[tex]\[ x = 3y - 2 \][/tex]
This is exactly the same as [tex]\( x = 3y - 2 \)[/tex].

4. Option: [tex]\( x = 3\left( y + \frac{2}{3} \right) \)[/tex]

Simplifying this, we handle the distribution:
[tex]\[ x = 3\left( y + \frac{2}{3} \right) \][/tex]
Distribute the 3:
[tex]\[ x = 3y + 3 \cdot \frac{2}{3} \][/tex]
[tex]\[ x = 3y + 2 \][/tex]
This equation does not match [tex]\( x = 3y - 2 \)[/tex].

Based on this simplification, the correct answer that is equivalent to [tex]\( x = 3y - 2 \)[/tex] is:

[tex]\[ x = 3\left( y - \frac{2}{3} \right) \][/tex]

Therefore, the equivalent equation is:

[tex]\[ x = 3\left( y - \frac{2}{3} \right) \][/tex]

Hence, the correct choice is [tex]\( x = 3\left(y - \frac{2}{3}\right) \)[/tex].