Which of the following equations is equivalent to [tex]S=\pi r^2 n[/tex]?

A. [tex]h=S-\pi r^2[/tex]
B. [tex]n=\frac{S}{\pi r^2}[/tex]
C. [tex]h=\frac{\pi r^2}{S}[/tex]
D. [tex]h=S+\pi r^2[/tex]



Answer :

To determine which of the given equations is equivalent to [tex]\( S = \pi r^2 n \)[/tex], let's analyze and manipulate the given equation step-by-step.

Starting with the given equation:

[tex]\[ S = \pi r^2 n \][/tex]

We are interested in isolating [tex]\( n \)[/tex] to find an equivalent expression.

Step 1: Solve for [tex]\( n \)[/tex].

To isolate [tex]\( n \)[/tex], divide both sides of the equation by [tex]\( \pi r^2 \)[/tex]:

[tex]\[ n = \frac{S}{\pi r^2} \][/tex]

Now let's compare this result with the given choices:

1. [tex]\( h = S - \pi r^2 \)[/tex]
2. [tex]\( n = \frac{S}{\pi r^2} \)[/tex]
3. [tex]\( h = \frac{\pi r^2}{S} \)[/tex]
4. [tex]\( h = S + \pi r^2 \)[/tex]

From our rearrangement, we see that the equation [tex]\( n = \frac{S}{\pi r^2} \)[/tex] matches our derived equation from the given equation [tex]\( S = \pi r^2 n \)[/tex].

Thus, the correct answer is:

[tex]\[ n = \frac{S}{\pi r^2} \][/tex]

So, the equivalent equation is:

[tex]\[ \boxed{n = \frac{S}{\pi r^2}} \][/tex]