Let's analyze the given problem. You need to find which equation, when solved for [tex]\( I \)[/tex], will result in the mathematical expression [tex]\( I = p \cdot r \cdot t \)[/tex].
1. Equation: [tex]\( 1 - p \cdot r = t \)[/tex]
Rearrange it to solve for [tex]\( I \)[/tex]:
[tex]\[
p \cdot r = 1 - t
\][/tex]
This does not match the form of [tex]\( I = p \cdot r \cdot t \)[/tex].
2. Equation: [tex]\( \frac{I - p}{r} = t \)[/tex]
Rearrange it to solve for [tex]\( I \)[/tex]:
[tex]\[
I - p = r \cdot t
\][/tex]
[tex]\[
I = r \cdot t + p
\][/tex]
This is not in the form of [tex]\( I = p \cdot r \cdot t \)[/tex].
3. Equation: [tex]\( \frac{I}{p \cdot r} = t \)[/tex]
Rearrange it to solve for [tex]\( I \)[/tex]:
[tex]\[
I = p \cdot r \cdot t
\][/tex]
This matches the form of [tex]\( I = p \cdot r \cdot t \)[/tex].
4. Equation: [tex]\( 1 + p \cdot r = t \)[/tex]
Rearrange it to solve for [tex]\( I \)[/tex]:
[tex]\[
p \cdot r = t - 1
\][/tex]
This does not match the form of [tex]\( I = p \cdot r \cdot t \)[/tex].
Hence, the correct equation is:
[tex]\[ \frac{I}{p \cdot r} = t \][/tex]