Given the equation [tex]\( I = prt \)[/tex], which option represents the equation solved for [tex]\( I \)[/tex]?

A. [tex]\( 1 - pr = t \)[/tex]

B. [tex]\( \frac{I - p}{r} = t \)[/tex]

C. [tex]\( \frac{I}{pr} = t \)[/tex]

D. [tex]\( 1 + pr = t \)[/tex]



Answer :

Let's analyze the given problem. You need to find which equation, when solved for [tex]\( I \)[/tex], will result in the mathematical expression [tex]\( I = p \cdot r \cdot t \)[/tex].

1. Equation: [tex]\( 1 - p \cdot r = t \)[/tex]

Rearrange it to solve for [tex]\( I \)[/tex]:
[tex]\[ p \cdot r = 1 - t \][/tex]
This does not match the form of [tex]\( I = p \cdot r \cdot t \)[/tex].

2. Equation: [tex]\( \frac{I - p}{r} = t \)[/tex]

Rearrange it to solve for [tex]\( I \)[/tex]:
[tex]\[ I - p = r \cdot t \][/tex]
[tex]\[ I = r \cdot t + p \][/tex]
This is not in the form of [tex]\( I = p \cdot r \cdot t \)[/tex].

3. Equation: [tex]\( \frac{I}{p \cdot r} = t \)[/tex]

Rearrange it to solve for [tex]\( I \)[/tex]:
[tex]\[ I = p \cdot r \cdot t \][/tex]
This matches the form of [tex]\( I = p \cdot r \cdot t \)[/tex].

4. Equation: [tex]\( 1 + p \cdot r = t \)[/tex]

Rearrange it to solve for [tex]\( I \)[/tex]:
[tex]\[ p \cdot r = t - 1 \][/tex]
This does not match the form of [tex]\( I = p \cdot r \cdot t \)[/tex].

Hence, the correct equation is:

[tex]\[ \frac{I}{p \cdot r} = t \][/tex]