Select the correct answer.

What is the value of this expression when [tex]a = 7[/tex] and [tex]b = -4[/tex]?

[tex]\frac{|2a| - b}{3}[/tex]

A. -6
B. [tex]-3 \frac{1}{3}[/tex]
C. [tex]3 \frac{1}{3}[/tex]
D. 6



Answer :

Sure, let's solve the given expression step by step.

We are provided with the expression:
[tex]\[ \frac{|2a| - b}{3} \][/tex]
and the values [tex]\( a = 7 \)[/tex] and [tex]\( b = -4 \)[/tex].

First, we need to substitute [tex]\( a \)[/tex] and [tex]\( b \)[/tex] into the expression.

1. Calculate [tex]\( 2a \)[/tex]:
[tex]\[ 2a = 2 \times 7 = 14 \][/tex]

2. Calculate the absolute value of [tex]\( 2a \)[/tex]:
[tex]\[ |2a| = |14| = 14 \][/tex]

3. Substitute [tex]\( |2a| \)[/tex] and [tex]\( b \)[/tex] into the expression:
[tex]\[ \frac{|2a| - b}{3} = \frac{14 - (-4)}{3} \][/tex]

4. Simplify inside the numerator:
[tex]\[ 14 - (-4) = 14 + 4 = 18 \][/tex]

5. Divide by 3:
[tex]\[ \frac{18}{3} = 6 \][/tex]

Therefore, the value of the expression when [tex]\( a = 7 \)[/tex] and [tex]\( b = -4 \)[/tex] is:
[tex]\[ 6 \][/tex]

So, the correct answer is:
[tex]\[ \boxed{6} \][/tex]
This corresponds to option D.