The formula [tex]$S=\frac{n\left(a_1+a_n\right)}{2}$[/tex] gives the partial sum of an arithmetic sequence. What is the formula solved for [tex]$a_n$[/tex]?

A. [tex]$a_n=\frac{2 S-a_1 n}{n}$[/tex]
B. [tex][tex]$a_n=\frac{2 S+a_1 n}{n}$[/tex][/tex]
C. [tex]$a_n=2 S+a_1 n+n$[/tex]
D. [tex]$a_n=2 S-a_1 n+n$[/tex]



Answer :

Let's start from the given formula for the partial sum of an arithmetic sequence:

[tex]\[ S = \frac{n(a_1 + a_n)}{2} \][/tex]

We need to solve for [tex]\( a_n \)[/tex]. We can do this step-by-step by isolating [tex]\( a_n \)[/tex] on one side of the equation.

### Step 1: Multiply both sides by 2

First, eliminate the fraction by multiplying both sides of the equation by 2:

[tex]\[ 2S = n(a_1 + a_n) \][/tex]

### Step 2: Divide both sides by [tex]\( n \)[/tex]

Now, divide both sides by [tex]\( n \)[/tex] to isolate the term [tex]\( a_1 + a_n \)[/tex]:

[tex]\[ \frac{2S}{n} = a_1 + a_n \][/tex]

### Step 3: Subtract [tex]\( a_1 \)[/tex] from both sides

To solve for [tex]\( a_n \)[/tex], subtract [tex]\( a_1 \)[/tex] from both sides of the equation:

[tex]\[ a_n = \frac{2S}{n} - a_1 \][/tex]

So the formula for [tex]\( a_n \)[/tex] is:

[tex]\[ a_n = \frac{2S}{n} - a_1 \][/tex]

#### Verification with Given Options:

Given options:

1. [tex]\( a_n = \frac{2 S - a_1 n}{n} \)[/tex]
2. [tex]\( a_n = \frac{2 S + a_1 n}{n} \)[/tex]
3. [tex]\( a_n = 2 S + a_1 n + n \)[/tex]
4. [tex]\( a_n = 2 S - a_1 n + n \)[/tex]

By comparing our derived formula [tex]\(\frac{2S}{n} - a_1\)[/tex] with the options, we see that the correct option is:

[tex]\[ a_n = \frac{2S - a_1 n}{n} \][/tex]

Thus, the correct formula is:

[tex]\[ a_n = \frac{2S - a_1 n}{n} \][/tex]