The parent function of the function [tex]$g(x) = (x - h)^2 + k$[/tex] is [tex]$f(x) = x^2$[/tex]. The vertex of the function [tex][tex]$g(x)$[/tex][/tex] is located at [tex]$(9, -8)$[/tex].

What are the values of [tex]$h$[/tex] and [tex][tex]$k$[/tex][/tex]?

[tex]
g(x) = (x - \square)^2 + \square
[/tex]



Answer :

Certainly! Let's break down the process step-by-step.

We are given a function [tex]\( g(x) = (x - h)^2 + k \)[/tex], which is in vertex form for a quadratic function. This form is derived from the parent function [tex]\( f(x) = x^2 \)[/tex], where the vertex is located at [tex]\( (h, k) \)[/tex].

In the problem, it is specified that the vertex of the function [tex]\( g(x) \)[/tex] is at the point (9, -8).

### Step-by-Step Solution:

1. Identify the Vertex Form:
The vertex form of a quadratic function is given by:
[tex]\[ g(x) = (x - h)^2 + k \][/tex]
Here, [tex]\( h \)[/tex] and [tex]\( k \)[/tex] are the coordinates of the vertex (h, k).

2. Substitute the Vertex Coordinates:
We are provided with the vertex [tex]\((9, -8)\)[/tex]. Therefore, [tex]\( h = 9 \)[/tex] and [tex]\( k = -8 \)[/tex].

3. Fill in the Values:
Replacing [tex]\( h \)[/tex] and [tex]\( k \)[/tex] in the vertex form equation, we have:
[tex]\[ g(x) = (x - 9)^2 - 8 \][/tex]

### Final Answer:
So, the values of [tex]\( h \)[/tex] and [tex]\( k \)[/tex] are:
[tex]\[ h = 9 \quad \text{and} \quad k = -8 \][/tex]

Substituting these values back into the function [tex]\( g(x) \)[/tex],
[tex]\[ g(x) = (x - 9)^2 - 8 \][/tex]

Therefore, the completed function is:
[tex]\[ g(x) = (x - 9)^2 - 8 \][/tex]

In conclusion, the values of [tex]\( h \)[/tex] and [tex]\( k \)[/tex] are:
[tex]\[ h = 9, \quad k = -8 \][/tex]