The final velocity, [tex]V[/tex], of an object under constant acceleration can be found using the formula [tex]V^2 = v^2 + 2as[/tex], where [tex]v[/tex] is the initial velocity (in meters per second), [tex]a[/tex] is acceleration (in meters per second squared), and [tex]s[/tex] is the distance (in meters).

What is the formula solved for [tex]a[/tex]?

A. [tex]v^2 - v^2 - 2s = a[/tex]

B. [tex]v^2 - v^2 + 2s = a[/tex]

C. [tex]\frac{v^2 - v^2}{2s} = a[/tex]

D. [tex]\frac{v^2 + v^2}{2s} = a[/tex]



Answer :

To solve for [tex]\( a \)[/tex] in the given formula [tex]\( V^2 = v^2 + 2 a s \)[/tex], let's manipulate the equation step by step:

1. Start with the original formula:
[tex]\[ V^2 = v^2 + 2 a s \][/tex]

2. To isolate the term involving [tex]\( a \)[/tex], subtract [tex]\( v^2 \)[/tex] from both sides of the equation:
[tex]\[ V^2 - v^2 = 2 a s \][/tex]

3. Now, to solve for [tex]\( a \)[/tex], we need to isolate [tex]\( a \)[/tex] by dividing both sides of the equation by [tex]\( 2 s \)[/tex]:
[tex]\[ a = \frac{V^2 - v^2}{2 s} \][/tex]

Thus, the correct formula for [tex]\( a \)[/tex] is:
[tex]\[ a = \frac{V^2 - v^2}{2 s} \][/tex]

So, the correct choice among the given options is:

[tex]\[ \frac{v^2 - v^2}{2 s} = a \][/tex]

Note that the correct formula is [tex]\( \frac{V^2 - v^2}{2 s} = a \)[/tex], based on the step-by-step manipulation of the original equation.