Which expression can be used to find the output numbers in the table?

\begin{tabular}{|c|c|}
\hline Input [tex]$(y)$[/tex] & Output \\
\hline 34 & 37 \\
\hline 35 & 38 \\
\hline 36 & 39 \\
\hline 37 & 40 \\
\hline
\end{tabular}

A. [tex]$y-3$[/tex]

B. [tex]$3y$[/tex]

C. [tex]$y+3$[/tex]

D. [tex]$3-y$[/tex]



Answer :

To find the correct expression that translates the input values [tex]\( y \)[/tex] into the corresponding output values provided in the table, we need to analyze the relationship between each pair of input and output.

Here’s the table:
[tex]\[ \begin{array}{|c|c|} \hline \text{Input } (y) & \text{Output} \\ \hline 34 & 37 \\ \hline 35 & 38 \\ \hline 36 & 39 \\ \hline 37 & 40 \\ \hline \end{array} \][/tex]

Let's analyze the relationship step-by-step:

1. Consider the first pair (34, 37):
To transform the input [tex]\( y = 34 \)[/tex] to the output 37, one option is to add 3:
[tex]\[ 34 + 3 = 37 \][/tex]

2. Consider the second pair (35, 38):
To transform the input [tex]\( y = 35 \)[/tex] to the output 38, we again add 3:
[tex]\[ 35 + 3 = 38 \][/tex]

3. Consider the third pair (36, 39):
Similarly, to transform the input [tex]\( y = 36 \)[/tex] to the output 39, we add 3:
[tex]\[ 36 + 3 = 39 \][/tex]

4. Consider the fourth pair (37, 40):
Lastly, to transform the input [tex]\( y = 37 \)[/tex] to the output 40, we add 3:
[tex]\[ 37 + 3 = 40 \][/tex]

From all these pairs, it's clear that the output is always the input [tex]\( y \)[/tex] plus 3.

Therefore, the expression that can be used to find the output numbers in the table is:
[tex]\[ \boxed{y + 3} \][/tex]

This corresponds to option C.