What is the solution to this system of equations?

[tex]\[
\begin{cases}
x + y = 6 \\
x = y + 2
\end{cases}
\][/tex]

A. [tex]\((6, 4)\)[/tex]

B. [tex]\((2, 4)\)[/tex]

C. [tex]\((4, 2)\)[/tex]

D. [tex]\((3, 3)\)[/tex]



Answer :

Certainly! Let's solve the given system of equations step-by-step:

1. We have the following system of equations:
[tex]\[ \left\{\begin{array}{l} x + y = 6 \\ x = y + 2 \end{array}\right. \][/tex]

2. First, we'll substitute the expression for [tex]\( x \)[/tex] from the second equation into the first equation. The second equation is:
[tex]\[ x = y + 2 \][/tex]

3. Substitute [tex]\( x = y + 2 \)[/tex] into the first equation [tex]\( x + y = 6 \)[/tex]:
[tex]\[ (y + 2) + y = 6 \][/tex]

4. Combine like terms:
[tex]\[ 2y + 2 = 6 \][/tex]

5. Isolate [tex]\( y \)[/tex] by subtracting 2 from both sides of the equation:
[tex]\[ 2y = 4 \][/tex]

6. Divide both sides by 2 to solve for [tex]\( y \)[/tex]:
[tex]\[ y = 2 \][/tex]

7. Now substitute [tex]\( y = 2 \)[/tex] back into the second equation [tex]\( x = y + 2 \)[/tex]:
[tex]\[ x = 2 + 2 \][/tex]

8. Simplify to find [tex]\( x \)[/tex]:
[tex]\[ x = 4 \][/tex]

Therefore, the solution to the system of equations is [tex]\( (4, 2) \)[/tex].

So, the correct answer is:
[tex]\[ (4, 2) \][/tex]