Type the correct answer in the box. Use numerals instead of words.

What value of [tex]$n$[/tex] makes the equation true?
[tex]$
\begin{array}{l}
-\frac{1}{5} n+7=2 \\
n=\square
\end{array}
$[/tex]



Answer :

To find the value of [tex]\( n \)[/tex] that satisfies the equation [tex]\( -\frac{1}{5}n + 7 = 2 \)[/tex], follow these steps:

1. Isolate the term involving [tex]\( n \)[/tex]:
[tex]\[ -\frac{1}{5}n + 7 = 2 \][/tex]
Subtract 7 from both sides of the equation:
[tex]\[ -\frac{1}{5}n = 2 - 7 \][/tex]
[tex]\[ -\frac{1}{5}n = -5 \][/tex]

2. Eliminate the fraction by multiplying both sides of the equation by [tex]\(-5\)[/tex] to solve for [tex]\( n \)[/tex]:
[tex]\[ n = (-5) \cdot (-5) \][/tex]
[tex]\[ n = 25 \][/tex]

Thus, the value of [tex]\( n \)[/tex] that makes the equation true is:
[tex]\[ n = 25 \][/tex]