To find the value of [tex]\( n \)[/tex] that satisfies the equation [tex]\( -\frac{1}{5}n + 7 = 2 \)[/tex], follow these steps:
1. Isolate the term involving [tex]\( n \)[/tex]:
[tex]\[
-\frac{1}{5}n + 7 = 2
\][/tex]
Subtract 7 from both sides of the equation:
[tex]\[
-\frac{1}{5}n = 2 - 7
\][/tex]
[tex]\[
-\frac{1}{5}n = -5
\][/tex]
2. Eliminate the fraction by multiplying both sides of the equation by [tex]\(-5\)[/tex] to solve for [tex]\( n \)[/tex]:
[tex]\[
n = (-5) \cdot (-5)
\][/tex]
[tex]\[
n = 25
\][/tex]
Thus, the value of [tex]\( n \)[/tex] that makes the equation true is:
[tex]\[
n = 25
\][/tex]