Cary calculated the surface area of a box in the shape of a rectangular prism. She wrote the equation [tex]$148=2(6w+6h+hw)$[/tex] to represent the width and height of the box. She solved for [tex]w[/tex] and got [tex]$w=\frac{74-6h}{h+6}$[/tex].

Which of the following is an equivalent equation?

A. [tex]w=\frac{148-6h}{12+h}[/tex]

B. [tex]w=\frac{148-12h}{12+2h}[/tex]

C. [tex]w=136-14h[/tex]

D. [tex]w=136-10h[/tex]



Answer :

Certainly! Let's analyze the problem step-by-step.

Given:
Cary's equation for the surface area of the box:
[tex]\[ 148 = 2(6w + 6h + hw) \][/tex]

After solving for [tex]\( w \)[/tex], Cary obtained:
[tex]\[ w = \frac{74 - 6h}{h + 6} \][/tex]

We need to find which of the given options is equivalent to Cary's expression for [tex]\( w \)[/tex].

Step 1: List the given options for [tex]\( w \)[/tex]:

1. [tex]\( w = \frac{148 - 6h}{12 + h} \)[/tex]
2. [tex]\( w = \frac{148 - 12h}{12 + 2h} \)[/tex]
3. [tex]\( w = 136 - 14h \)[/tex]
4. [tex]\( w = 136 - 10h \)[/tex]

Step 2: Check each option to determine if it is equivalent to [tex]\( w = \frac{74 - 6h}{h + 6} \)[/tex].

Given the result, we can infer:

1. First option: [tex]\( w = \frac{148 - 6h}{12 + h} \)[/tex]
- This option is not equivalent.

2. Second option: [tex]\( w = \frac{148 - 12h}{12 + 2h} \)[/tex]
- This option is equivalent.

3. Third option: [tex]\( w = 136 - 14h \)[/tex]
- This option is not equivalent.

4. Fourth option: [tex]\( w = 136 - 10h \)[/tex]
- This option is not equivalent.

Conclusion:

The equation equivalent to Cary's expression for [tex]\( w \)[/tex] is:
[tex]\[ w = \frac{148 - 12h}{12 + 2h} \][/tex]

Therefore, the correct choice is:
[tex]\[ w = \frac{148 - 12h}{12 + 2h} \][/tex]