Simplify:

[tex]\[ \left[\frac{a^m}{a^n}\right]^p \left[\frac{a^n}{a^p}\right]^m \left[\frac{a^p}{a^m}\right]^n \][/tex]



Answer :

Sure, let's simplify the given expression step-by-step. The expression to simplify is:

[tex]\[ \left[\frac{a^m}{a^n}\right]^p \left[\frac{a^n}{a^p}\right]^m \left[\frac{a^p}{a^m}\right]^n \][/tex]

First, recall the property of exponents that [tex]\(\frac{a^x}{a^y} = a^{x-y}\)[/tex]. We can apply this property to each fraction in the expression:

1. Simplify [tex]\(\left[\frac{a^m}{a^n}\right]^p\)[/tex]:

[tex]\[ \left[\frac{a^m}{a^n}\right]^p = \left[a^{m-n}\right]^p = a^{p(m-n)} \][/tex]

2. Simplify [tex]\(\left[\frac{a^n}{a^p}\right]^m\)[/tex]:

[tex]\[ \left[\frac{a^n}{a^p}\right]^m = \left[a^{n-p}\right]^m = a^{m(n-p)} \][/tex]

3. Simplify [tex]\(\left[\frac{a^p}{a^m}\right]^n\)[/tex]:

[tex]\[ \left[\frac{a^p}{a^m}\right]^n = \left[a^{p-m}\right]^n = a^{n(p-m)} \][/tex]

Now, we substitute these simplified forms back into the original expression:

[tex]\[ a^{p(m-n)} \cdot a^{m(n-p)} \cdot a^{n(p-m)} \][/tex]

Next, we use the property of exponents that [tex]\(a^x \cdot a^y = a^{x+y}\)[/tex]. So, we combine the exponents of [tex]\(a\)[/tex]:

[tex]\[ a^{p(m-n) + m(n-p) + n(p-m)} \][/tex]

Now, distribute the exponents:

[tex]\[ p(m-n) = pm - pn \][/tex]

[tex]\[ m(n-p) = mn - mp \][/tex]

[tex]\[ n(p-m) = np - nm \][/tex]

Then combining these:

[tex]\[ pm - pn + mn - mp + np - nm \][/tex]

Notice that some terms will cancel out. Combine like terms:

[tex]\[ pm - mp = 0 \][/tex]
[tex]\[ mn - nm = 0 \][/tex]
[tex]\[ np - pn = 0 \][/tex]

Therefore, the sum of the exponents will be:

[tex]\[ pm - pn + mn - mp + np - nm = 0 \][/tex]

So the simplified form of the original expression is:

[tex]\[ a^0 = 1 \][/tex]

Therefore, the given expression simplifies to:

[tex]\[ 1 \][/tex]

This is the final simplified form.