Select the correct answer.

What is this expression in simplified form?

[tex]\[ (8 \sqrt{10})(8 \sqrt{5}) \][/tex]

A. [tex]\( 64 \sqrt{50} \)[/tex]

B. [tex]\( 16 \sqrt{50} \)[/tex]

C. [tex]\( 80 \sqrt{2} \)[/tex]

D. [tex]\( 320 \sqrt{2} \)[/tex]



Answer :

Certainly! Let's break down and simplify the given expression step by step:

Given expression:
[tex]\[ (8 \sqrt{10})(8 \sqrt{5}) \][/tex]

1. Combine the constants:
[tex]\[ 8 \times 8 = 64 \][/tex]

2. Combine the radicals:
Using the property of square roots that [tex]\(\sqrt{a} \times \sqrt{b} = \sqrt{a \times b}\)[/tex]:
[tex]\[ \sqrt{10} \times \sqrt{5} = \sqrt{10 \times 5} = \sqrt{50} \][/tex]

3. Combine the constant and the radical parts:
[tex]\[ 64 \times \sqrt{50} \][/tex]

Thus, the simplified form of the expression [tex]\((8 \sqrt{10})(8 \sqrt{5})\)[/tex] is:
[tex]\[ 64 \sqrt{50} \][/tex]

So the correct answer is:
[tex]\[ \boxed{A. \, 64 \sqrt{50}} \][/tex]