Certainly! Let's break down and simplify the given expression step by step:
Given expression:
[tex]\[
(8 \sqrt{10})(8 \sqrt{5})
\][/tex]
1. Combine the constants:
[tex]\[
8 \times 8 = 64
\][/tex]
2. Combine the radicals:
Using the property of square roots that [tex]\(\sqrt{a} \times \sqrt{b} = \sqrt{a \times b}\)[/tex]:
[tex]\[
\sqrt{10} \times \sqrt{5} = \sqrt{10 \times 5} = \sqrt{50}
\][/tex]
3. Combine the constant and the radical parts:
[tex]\[
64 \times \sqrt{50}
\][/tex]
Thus, the simplified form of the expression [tex]\((8 \sqrt{10})(8 \sqrt{5})\)[/tex] is:
[tex]\[
64 \sqrt{50}
\][/tex]
So the correct answer is:
[tex]\[
\boxed{A. \, 64 \sqrt{50}}
\][/tex]