What is the solution to the system of equations?

[tex]\[ \left\{ \begin{array}{l}
2x + 3y = -11 \\
y = x - 2
\end{array} \right. \][/tex]

A. [tex]\((-1, -1)\)[/tex]
B. [tex]\((-1, -3)\)[/tex]
C. [tex]\(\left(\frac{5}{11}, -\frac{3}{11}\right)\)[/tex]
D. [tex]\((-1, 3)\)[/tex]



Answer :

To solve the system of equations

[tex]\[ \left\{\begin{array}{l} 2x + 3y = -11 \\ y = x - 2 \end{array}\right. \][/tex]

we start by substituting the expression for [tex]\( y \)[/tex] from the second equation into the first equation.

Given:
[tex]\[ y = x - 2 \][/tex]

Substitute [tex]\( y \)[/tex] into the first equation:
[tex]\[ 2x + 3(x - 2) = -11 \][/tex]

Simplify the equation:
[tex]\[ 2x + 3x - 6 = -11 \][/tex]
[tex]\[ 5x - 6 = -11 \][/tex]

Add 6 to both sides:
[tex]\[ 5x = -11 + 6 \][/tex]
[tex]\[ 5x = -5 \][/tex]

Divide by 5:
[tex]\[ x = -1 \][/tex]

Now, substitute [tex]\( x \)[/tex] back into the second equation to find [tex]\( y \)[/tex]:
[tex]\[ y = x - 2 \][/tex]
[tex]\[ y = -1 - 2 \][/tex]
[tex]\[ y = -3 \][/tex]

Therefore, the solution to the system of equations is:
[tex]\[ (x, y) = (-1, -3) \][/tex]

So, the correct answer is:
[tex]\[ \boxed{(-1, -3)} \][/tex]