Answer :
Let's evaluate the expression [tex]\(\frac{3y}{x} - z\)[/tex] given the values [tex]\(x = 6\)[/tex], [tex]\(y = -8\)[/tex], and [tex]\(z = 4\)[/tex].
1. Begin by substituting the given values into the expression:
[tex]\[ \frac{3(-8)}{6} - 4 \][/tex]
2. Calculate the numerator of the fraction:
[tex]\[ 3 \times (-8) = -24 \][/tex]
3. Divide the result by the given value of [tex]\(x\)[/tex]:
[tex]\[ \frac{-24}{6} = -4.0 \][/tex]
4. Now subtract [tex]\(z\)[/tex] from the result obtained in the previous step:
[tex]\[ -4.0 - 4 = -8.0 \][/tex]
Therefore, the values we obtain are:
- Intermediate result from [tex]\(\frac{3y}{x}\)[/tex] which is [tex]\(-4.0\)[/tex].
- Final result of the entire expression [tex]\(\frac{3y}{x} - z\)[/tex] which is [tex]\(-8.0\)[/tex].
These are the evaluated results for the given expression.
1. Begin by substituting the given values into the expression:
[tex]\[ \frac{3(-8)}{6} - 4 \][/tex]
2. Calculate the numerator of the fraction:
[tex]\[ 3 \times (-8) = -24 \][/tex]
3. Divide the result by the given value of [tex]\(x\)[/tex]:
[tex]\[ \frac{-24}{6} = -4.0 \][/tex]
4. Now subtract [tex]\(z\)[/tex] from the result obtained in the previous step:
[tex]\[ -4.0 - 4 = -8.0 \][/tex]
Therefore, the values we obtain are:
- Intermediate result from [tex]\(\frac{3y}{x}\)[/tex] which is [tex]\(-4.0\)[/tex].
- Final result of the entire expression [tex]\(\frac{3y}{x} - z\)[/tex] which is [tex]\(-8.0\)[/tex].
These are the evaluated results for the given expression.