What is the solution to the system of equations?

[tex]\[
\left\{\begin{array}{l}
2x + 3y = -11 \\
y = x - 2
\end{array}\right.
\][/tex]

A. [tex]$(-1, -1)$[/tex]

B. [tex]$(-1, -3)$[/tex]

C. [tex]$\left(\frac{5}{11}, -\frac{3}{11}\right)$[/tex]

D. [tex]$(-1, 3)$[/tex]



Answer :

To find the solution to the system of equations:

[tex]\[ \left\{\begin{array}{l} 2x + 3y = -11 \\ y = x - 2 \end{array}\right. \][/tex]

we can use the following steps:

1. Substitute [tex]\( y \)[/tex] from the second equation into the first equation:

Given [tex]\( y = x - 2 \)[/tex], we can substitute [tex]\( y \)[/tex] in the first equation:
[tex]\[ 2x + 3(x - 2) = -11 \][/tex]

2. Simplify the equation:

Distribute the 3 on the left-hand side:
[tex]\[ 2x + 3x - 6 = -11 \][/tex]

Combine like terms:
[tex]\[ 5x - 6 = -11 \][/tex]

3. Solve for [tex]\( x \)[/tex]:

Add 6 to both sides of the equation to isolate the term with [tex]\( x \)[/tex]:
[tex]\[ 5x = -5 \][/tex]

Divide both sides by 5:
[tex]\[ x = -1 \][/tex]

4. Substitute [tex]\( x = -1 \)[/tex] back into the second equation to find [tex]\( y \)[/tex]:

Use the equation [tex]\( y = x - 2 \)[/tex]:
[tex]\[ y = -1 - 2 = -3 \][/tex]

So, the solution to the system of equations is:
[tex]\[ (x, y) = (-1, -3) \][/tex]

Looking at the provided choices, the correct answer is:
[tex]\[ (-1, -3) \][/tex]