Answer :

Let's find the 58th term of the arithmetic sequence [tex]\(1, 3, 5, \ldots\)[/tex].

First, let's identify the relevant characteristics of the arithmetic sequence:
- The first term ([tex]\(a_1\)[/tex]) is [tex]\(1\)[/tex].
- The common difference ([tex]\(d\)[/tex]) is [tex]\(3 - 1 = 2\)[/tex].

The formula for the [tex]\(n\)[/tex]-th term of an arithmetic sequence is:
[tex]\[ a_n = a_1 + (n-1) \cdot d \][/tex]

We are asked to find the 58th term, so we will substitute [tex]\(n = 58\)[/tex], [tex]\(a_1 = 1\)[/tex], and [tex]\(d = 2\)[/tex] into the formula.

Substitute the values into the formula:
[tex]\[ a_{58} = 1 + (58-1) \cdot 2 \][/tex]

Simplify the expression inside the parentheses:
[tex]\[ a_{58} = 1 + 57 \cdot 2 \][/tex]

Multiply:
[tex]\[ a_{58} = 1 + 114 \][/tex]

Add the terms:
[tex]\[ a_{58} = 115 \][/tex]

Therefore, the 58th term of the arithmetic sequence [tex]\(1, 3, 5, \ldots\)[/tex] is [tex]\(115\)[/tex].