Which is equivalent to [tex] \frac{\sqrt{3}}{\sqrt{8}} [/tex] when the denominator is "rationalized"?

A. [tex] \frac{3}{8} [/tex]

B. [tex] \frac{\sqrt{6}}{4} [/tex]

C. [tex] \frac{\sqrt{3}}{8} [/tex]

D. [tex] \frac{\sqrt{24}}{64} [/tex]

E. [tex] \frac{8 \sqrt{3}}{3} [/tex]



Answer :

To solve the problem of rationalizing the denominator for the expression [tex]\(\frac{\sqrt{3}}{\sqrt{8}}\)[/tex], let's go through the following steps:

1. Original Expression:
[tex]\[ \frac{\sqrt{3}}{\sqrt{8}} \][/tex]

2. Rationalize the Denominator: We do this by eliminating any square roots in the denominator. To do this, multiply both the numerator and the denominator by [tex]\(\sqrt{8}\)[/tex]:

[tex]\[ \frac{\sqrt{3}}{\sqrt{8}} \times \frac{\sqrt{8}}{\sqrt{8}} = \frac{\sqrt{3} \cdot \sqrt{8}}{\sqrt{8} \cdot \sqrt{8}} \][/tex]

3. Simplify the Denominator:

[tex]\[ \sqrt{8} \cdot \sqrt{8} = 8 \][/tex]

So, the denominator becomes 8.

4. Simplify the Numerator:

[tex]\[ \sqrt{3} \cdot \sqrt{8} = \sqrt{3 \cdot 8} = \sqrt{24} \][/tex]

5. Expression after Rationalizing:

[tex]\[ \frac{\sqrt{24}}{8} \][/tex]

6. Further Simplify the Numerator: Simplify [tex]\(\sqrt{24}\)[/tex]. Recall that:

[tex]\[ \sqrt{24} = \sqrt{4 \cdot 6} = \sqrt{4} \cdot \sqrt{6} = 2 \sqrt{6} \][/tex]

So now the expression becomes:

[tex]\[ \frac{2 \sqrt{6}}{8} \][/tex]

7. Simplify the Fraction:

[tex]\[ \frac{2 \sqrt{6}}{8} = \frac{2}{8} \cdot \sqrt{6} = \frac{1}{4} \cdot \sqrt{6} = \frac{\sqrt{6}}{4} \][/tex]

Therefore, the rationalized form of [tex]\(\frac{\sqrt{3}}{\sqrt{8}}\)[/tex] is [tex]\(\frac{\sqrt{6}}{4}\)[/tex].

The correct answer is:

[tex]\[ \boxed{\frac{\sqrt{6}}{4}} \][/tex]