Solve for [tex]\( n \)[/tex]:
[tex]\[ 8n + 7 = 31 \][/tex]

A. [tex]\( n = 6 \)[/tex]
B. [tex]\( n = 5 \)[/tex]
C. [tex]\( n = 3 \)[/tex]
D. [tex]\( n = 7 \)[/tex]



Answer :

To solve the equation [tex]\(8n + 7 = 31\)[/tex], follow these steps:

1. Isolate the term with the variable [tex]\(n\)[/tex]:
[tex]\[ 8n + 7 = 31 \][/tex]
Subtract 7 from both sides of the equation to remove the constant term on the left side:
[tex]\[ 8n + 7 - 7 = 31 - 7 \][/tex]
Simplify this to:
[tex]\[ 8n = 24 \][/tex]

2. Solve for [tex]\(n\)[/tex]:
Divide both sides of the equation by 8 to isolate [tex]\(n\)[/tex]:
[tex]\[ \frac{8n}{8} = \frac{24}{8} \][/tex]
Simplify this to:
[tex]\[ n = 3 \][/tex]

So, the solution to the equation [tex]\(8n + 7 = 31\)[/tex] is [tex]\(n = 3\)[/tex].

Among the given options:
- [tex]\(n = 6\)[/tex]
- [tex]\(n = 5\)[/tex]
- [tex]\(n = 3\)[/tex]
- [tex]\(n = 7\)[/tex]

The correct answer is:
[tex]\[ n = 3 \][/tex]