Select the correct answer.

This table defines a function.
\begin{tabular}{|c|c|c|c|c|}
\hline[tex]$x$[/tex] & 7 & 10 & 13 & 16 \\
\hline[tex]$y$[/tex] & 21 & 30 & 39 & 48 \\
\hline
\end{tabular}

Which table represents the inverse of the function defined above?

A.
\begin{tabular}{|c|c|c|c|c|}
\hline[tex]$x$[/tex] & -7 & -10 & -13 & -16 \\
\hline[tex]$y$[/tex] & 21 & 30 & 39 & 48 \\
\hline
\end{tabular}

B.
\begin{tabular}{|c|c|c|c|c|}
\hline[tex]$x$[/tex] & -21 & -30 & -39 & -48 \\
\hline[tex]$y$[/tex] & 7 & 10 & 13 & 16 \\
\hline
\end{tabular}

C.
\begin{tabular}{|c|c|c|c|c|}
\hline[tex]$x$[/tex] & 7 & 10 & 13 & 16 \\
\hline[tex]$y$[/tex] & -21 & -30 & -39 & -48 \\
\hline
\end{tabular}

D.
\begin{tabular}{|c|c|c|c|c|}
\hline[tex]$x$[/tex] & 21 & 30 & 39 & 48 \\
\hline[tex]$y$[/tex] & 7 & 10 & 13 & 16 \\
\hline
\end{tabular}



Answer :

To determine which table represents the inverse of the function given above, we need to recall that the inverse of a function swaps the roles of the input (x-values) and output (y-values). Essentially, for the inverse, what was originally the y-coordinate becomes the x-coordinate and vice versa.

Given the original function:
[tex]\[ \begin{array}{|c|c|c|c|c|} \hline x & 7 & 10 & 13 & 16 \\ \hline y & 21 & 30 & 39 & 48 \\ \hline \end{array} \][/tex]

To find the inverse, swap the x and y columns:
[tex]\[ \begin{array}{|c|c|c|c|c|} \hline x & 21 & 30 & 39 & 48 \\ \hline y & 7 & 10 & 13 & 16 \\ \hline \end{array} \][/tex]

Now, let's match this with the provided options:

A.
[tex]\[ \begin{array}{|c|c|c|c|c|} \hline x & -7 & -10 & -13 & -16 \\ \hline y & 21 & 30 & 39 & 48 \\ \hline \end{array} \][/tex]
Here the [tex]\(x\)[/tex]-values are simply the negative of the original [tex]\(x\)[/tex]-values, and the [tex]\(y\)[/tex]-values remain the same. This does not represent the inverse.

B.
[tex]\[ \begin{array}{|c|c|c|c|c|} \hline x & -21 & -30 & -39 & -48 \\ \hline y & 7 & 10 & 13 & 16 \\ \hline \end{array} \][/tex]
Here, the [tex]\(x\)[/tex]-values are the negative of the original [tex]\(y\)[/tex]-values, and the [tex]\(y\)[/tex]-values are the original [tex]\(x\)[/tex]-values. This does not represent the inverse.

C.
[tex]\[ \begin{array}{|c|c|c|c|c|} \hline x & 7 & 10 & 13 & 16 \\ \hline y & -21 & -30 & -39 & -48 \\ \hline \end{array} \][/tex]
Here, the [tex]\(x\)[/tex]-values remain the same, and the [tex]\(y\)[/tex]-values are the negative of the original [tex]\(y\)[/tex]-values. This also does not represent the inverse.

D.
[tex]\[ \begin{array}{|c|c|c|c|c|} \hline x & 21 & 30 & 39 & 48 \\ \hline y & 7 & 10 & 13 & 16 \\ \hline \end{array} \][/tex]
Here, we have exactly swapped the original [tex]\(x\)[/tex] and [tex]\(y\)[/tex] values. This table correctly represents the inverse of the given function.

Therefore, the correct answer is:
D.