Answer :
Sure, let's carefully examine the given expressions and their results to ensure they match the question. We're working with two expressions here: [tex]\(9x + y\)[/tex] and [tex]\(x^2\)[/tex].
### Step-by-Step Solution:
1. Identify Variables and Expressions:
- [tex]\(x\)[/tex] and [tex]\(y\)[/tex] are variables.
- The first expression is [tex]\(9x + y\)[/tex].
- The second expression is [tex]\(x^2\)[/tex].
2. Expression 1: [tex]\(9x + y\)[/tex]:
- This expression represents a linear combination of [tex]\(x\)[/tex] and [tex]\(y\)[/tex].
- Given the result, [tex]\(9x + y\)[/tex] remains [tex]\(9x + y\)[/tex].
So, for any value of [tex]\(x\)[/tex] and [tex]\(y\)[/tex], if we substitute these into the expression [tex]\(9x + y\)[/tex], we simply evaluate it by multiplying [tex]\(x\)[/tex] by 9, then adding [tex]\(y\)[/tex] to it.
3. Expression 2: [tex]\(x^2\)[/tex]:
- This expression represents the square of the variable [tex]\(x\)[/tex].
- Squaring a number means multiplying the number by itself.
So, for any given value of [tex]\(x\)[/tex], we find [tex]\(x^2\)[/tex] by calculating [tex]\(x \cdot x\)[/tex].
### Summary of Results:
- The result of the first expression [tex]\(9x + y\)[/tex] is simply [tex]\(9x + y\)[/tex].
- The result of the second expression [tex]\(x^2\)[/tex] is [tex]\(x^2\)[/tex].
In conclusion, the results for the expressions [tex]\(9x + y\)[/tex] and [tex]\(x^2\)[/tex] are [tex]\( (9x + y, x^2) \)[/tex].
### Step-by-Step Solution:
1. Identify Variables and Expressions:
- [tex]\(x\)[/tex] and [tex]\(y\)[/tex] are variables.
- The first expression is [tex]\(9x + y\)[/tex].
- The second expression is [tex]\(x^2\)[/tex].
2. Expression 1: [tex]\(9x + y\)[/tex]:
- This expression represents a linear combination of [tex]\(x\)[/tex] and [tex]\(y\)[/tex].
- Given the result, [tex]\(9x + y\)[/tex] remains [tex]\(9x + y\)[/tex].
So, for any value of [tex]\(x\)[/tex] and [tex]\(y\)[/tex], if we substitute these into the expression [tex]\(9x + y\)[/tex], we simply evaluate it by multiplying [tex]\(x\)[/tex] by 9, then adding [tex]\(y\)[/tex] to it.
3. Expression 2: [tex]\(x^2\)[/tex]:
- This expression represents the square of the variable [tex]\(x\)[/tex].
- Squaring a number means multiplying the number by itself.
So, for any given value of [tex]\(x\)[/tex], we find [tex]\(x^2\)[/tex] by calculating [tex]\(x \cdot x\)[/tex].
### Summary of Results:
- The result of the first expression [tex]\(9x + y\)[/tex] is simply [tex]\(9x + y\)[/tex].
- The result of the second expression [tex]\(x^2\)[/tex] is [tex]\(x^2\)[/tex].
In conclusion, the results for the expressions [tex]\(9x + y\)[/tex] and [tex]\(x^2\)[/tex] are [tex]\( (9x + y, x^2) \)[/tex].