Answer :

Certainly! Let's simplify the given expression step by step:

[tex]\[ \left( 2m^4 n^3 \right)^{-4} \left( 2m^2 n \right)^7 \][/tex]

Step 1: Apply the power rule:

For [tex]\((a^m)^n\)[/tex], the power rule states that [tex]\((a^m)^n = a^{m \cdot n}\)[/tex].

Applying this:

[tex]\[ (2m^4 n^3)^{-4} = 2^{-4} \cdot (m^4)^{-4} \cdot (n^3)^{-4} = 2^{-4} \cdot m^{-16} \cdot n^{-12} \][/tex]

[tex]\[ (2m^2 n)^7 = 2^7 \cdot (m^2)^7 \cdot n^7 = 2^7 \cdot m^{14} \cdot n^7 \][/tex]

Step 2: Multiply the results:

Now we combine these two expressions:

[tex]\[ (2^{-4} \cdot m^{-16} \cdot n^{-12}) \cdot (2^7 \cdot m^{14} \cdot n^7) \][/tex]

Step 3: Combine the coefficients and like bases:

For the coefficient [tex]\(2\)[/tex]:

[tex]\[ 2^{-4} \cdot 2^7 = 2^{-4+7} = 2^3 = 8 \][/tex]

For [tex]\(m\)[/tex]:

[tex]\[ m^{-16} \cdot m^{14} = m^{-16+14} = m^{-2} \][/tex]

For [tex]\(n\)[/tex]:

[tex]\[ n^{-12} \cdot n^7 = n^{-12+7} = n^{-5} \][/tex]

Step 4: Write the final simplified expression:

Combining these, we get:

[tex]\[ 8m^{-2} n^{-5} = \frac{8}{m^2 n^5} \][/tex]

Thus, the simplified expression is:

[tex]\[ \frac{8}{m^2 n^5} \][/tex]

So, your final answer is:

[tex]\[ \frac{8}{m^2 n^5} \][/tex]