Answer :
Let's simplify the given expression step by step:
The expression to simplify is:
[tex]\[ \left(2 m^4 n^3\right)^{-4} \left(2 m^2 n\right)^7 \][/tex]
### Step 1: Simplify each term separately
#### Simplify [tex]\(\left(2 m^4 n^3\right)^{-4}\)[/tex]:
1. Distribute the exponent [tex]\(-4\)[/tex] to each factor inside the parentheses:
[tex]\[ (2 m^4 n^3)^{-4} = 2^{-4} (m^4)^{-4} (n^3)^{-4} \][/tex]
2. Simplify each part individually:
[tex]\[ 2^{-4} = \frac{1}{2^4} = \frac{1}{16} \][/tex]
[tex]\[ (m^4)^{-4} = m^{4 \cdot -4} = m^{-16} \][/tex]
[tex]\[ (n^3)^{-4} = n^{3 \cdot -4} = n^{-12} \][/tex]
So, we have:
[tex]\[ (2 m^4 n^3)^{-4} = \frac{1}{16} m^{-16} n^{-12} \][/tex]
#### Simplify [tex]\(\left(2 m^2 n\right)^7\)[/tex]:
1. Distribute the exponent [tex]\(7\)[/tex] to each factor inside the parentheses:
[tex]\[ (2 m^2 n)^7 = 2^7 (m^2)^7 (n)^7 \][/tex]
2. Simplify each part individually:
[tex]\[ 2^7 = 128 \][/tex]
[tex]\[ (m^2)^7 = m^{2 \cdot 7} = m^{14} \][/tex]
[tex]\[ (n)^7 = n^7 \][/tex]
So, we have:
[tex]\[ (2 m^2 n)^7 = 128 m^{14} n^7 \][/tex]
### Step 2: Combine the simplified terms
Combine the results from the two parts we simplified:
[tex]\[ \left(\frac{1}{16} m^{-16} n^{-12}\right) \left(128 m^{14} n^7\right) \][/tex]
#### Combine the coefficients:
[tex]\[ \frac{1}{16} \times 128 = 8 \][/tex]
#### Combine the [tex]\(m\)[/tex] terms:
[tex]\[ m^{-16} \times m^{14} = m^{-16 + 14} = m^{-2} \][/tex]
#### Combine the [tex]\(n\)[/tex] terms:
[tex]\[ n^{-12} \times n^7 = n^{-12 + 7} = n^{-5} \][/tex]
### Step 3: Write the final simplified expression
Combining all parts, we have:
[tex]\[ 8 m^{-2} n^{-5} \][/tex]
This can be written as:
[tex]\[ \frac{8}{m^2 n^5} \][/tex]
So the simplified expression is:
[tex]\[ \frac{8}{m^2 n^5} \][/tex]
In the form [tex]\(\frac{[?]}{\left.m^{[]} n\right]}\)[/tex], we get:
[tex]\[ \frac{8}{m^2 n^5} \][/tex]
The expression to simplify is:
[tex]\[ \left(2 m^4 n^3\right)^{-4} \left(2 m^2 n\right)^7 \][/tex]
### Step 1: Simplify each term separately
#### Simplify [tex]\(\left(2 m^4 n^3\right)^{-4}\)[/tex]:
1. Distribute the exponent [tex]\(-4\)[/tex] to each factor inside the parentheses:
[tex]\[ (2 m^4 n^3)^{-4} = 2^{-4} (m^4)^{-4} (n^3)^{-4} \][/tex]
2. Simplify each part individually:
[tex]\[ 2^{-4} = \frac{1}{2^4} = \frac{1}{16} \][/tex]
[tex]\[ (m^4)^{-4} = m^{4 \cdot -4} = m^{-16} \][/tex]
[tex]\[ (n^3)^{-4} = n^{3 \cdot -4} = n^{-12} \][/tex]
So, we have:
[tex]\[ (2 m^4 n^3)^{-4} = \frac{1}{16} m^{-16} n^{-12} \][/tex]
#### Simplify [tex]\(\left(2 m^2 n\right)^7\)[/tex]:
1. Distribute the exponent [tex]\(7\)[/tex] to each factor inside the parentheses:
[tex]\[ (2 m^2 n)^7 = 2^7 (m^2)^7 (n)^7 \][/tex]
2. Simplify each part individually:
[tex]\[ 2^7 = 128 \][/tex]
[tex]\[ (m^2)^7 = m^{2 \cdot 7} = m^{14} \][/tex]
[tex]\[ (n)^7 = n^7 \][/tex]
So, we have:
[tex]\[ (2 m^2 n)^7 = 128 m^{14} n^7 \][/tex]
### Step 2: Combine the simplified terms
Combine the results from the two parts we simplified:
[tex]\[ \left(\frac{1}{16} m^{-16} n^{-12}\right) \left(128 m^{14} n^7\right) \][/tex]
#### Combine the coefficients:
[tex]\[ \frac{1}{16} \times 128 = 8 \][/tex]
#### Combine the [tex]\(m\)[/tex] terms:
[tex]\[ m^{-16} \times m^{14} = m^{-16 + 14} = m^{-2} \][/tex]
#### Combine the [tex]\(n\)[/tex] terms:
[tex]\[ n^{-12} \times n^7 = n^{-12 + 7} = n^{-5} \][/tex]
### Step 3: Write the final simplified expression
Combining all parts, we have:
[tex]\[ 8 m^{-2} n^{-5} \][/tex]
This can be written as:
[tex]\[ \frac{8}{m^2 n^5} \][/tex]
So the simplified expression is:
[tex]\[ \frac{8}{m^2 n^5} \][/tex]
In the form [tex]\(\frac{[?]}{\left.m^{[]} n\right]}\)[/tex], we get:
[tex]\[ \frac{8}{m^2 n^5} \][/tex]