The trajectory of several rockets is shown as data entries in a [tex]$5 \times 3$[/tex] matrix.

[tex]\[
\left[\begin{array}{lll}
4 & 8 & 9 \\
5 & 1 & 7 \\
9 & 6 & 3 \\
2 & 4 & 8 \\
3 & 2 & 1
\end{array}\right]
\][/tex]

Which of the following represents a vector from one of the rockets?

A. [tex]\(\left[\begin{array}{lll}4 & 8 & 9 \\ 5 & 1 & 7 \\ 9 & 6 & 3\end{array}\right]\)[/tex]

B. [tex]\((9+6+3)=18\)[/tex]

C. [tex]\(\left[\begin{array}{ll}4 & 8 \\ 5 & 1 \\ 9 & 6 \\ 2 & 4 \\ 3 & 2\end{array}\right]\)[/tex]

D. [tex]\(\left[\begin{array}{l}9 \\ 7 \\ 3 \\ 8 \\ 1\end{array}\right]\)[/tex]



Answer :

To determine which of the given options represents a vector from one of the rockets, we need to consider the data provided in the [tex]\(5 \times 3\)[/tex] matrix:

[tex]\[ \left[\begin{array}{lll} 4 & 8 & 9 \\ 5 & 1 & 7 \\ 9 & 6 & 3 \\ 2 & 4 & 8 \\ 3 & 2 & 1 \end{array}\right] \][/tex]

From this matrix, each row constitutes a vector representing the trajectory data of a rocket. Specifically, the vectors represented by each row are:
1. [tex]\([4, 8, 9]\)[/tex]
2. [tex]\([5, 1, 7]\)[/tex]
3. [tex]\([9, 6, 3]\)[/tex]
4. [tex]\([2, 4, 8]\)[/tex]
5. [tex]\([3, 2, 1]\)[/tex]

Next, we need to examine each given option to see if any matches one of these vectors:
1. [tex]\[ \left[\begin{array}{lll} 4 & 8 & 9 \\ 5 & 1 & 7 \\ 9 & 6 & 3 \end{array}\right] \][/tex]
This option is structured as a [tex]\(3 \times 3\)[/tex] matrix, not a single vector from the original [tex]\(5 \times 3\)[/tex] matrix.

2. [tex]\((9+6+3)=18\)[/tex]
This option is a calculation resulting in the scalar value 18, which does not represent a vector.

3. [tex]\[ \left[\begin{array}{ll} 4 & 8 \\ 5 & 1 \\ 9 & 6 \\ 2 & 4 \\ 3 & 2 \end{array}\right] \][/tex]
This option is structured as a [tex]\(5 \times 2\)[/tex] matrix, not a single vector from the original [tex]\(5 \times 3\)[/tex] matrix.

4. [tex]\[ \left[\begin{array}{l} 9 \\ 7 \\ 3 \\ 8 \\ 1 \end{array}\right] \][/tex]
This option is structured as a [tex]\(5 \times 1\)[/tex] column matrix, not a single vector from the original [tex]\(5 \times 3\)[/tex] matrix.

By examining the options, none of them match the vectors directly taken from the rows of the original [tex]\(5 \times 3\)[/tex] matrix. Therefore, none of the given options are correct representations of a single vector from the original set of trajectories.