Answer :
To find the value of the expression [tex]\( 3z - 3 \)[/tex] when [tex]\( z = 7 \)[/tex], follow these steps:
1. Substitute the value of [tex]\( z \)[/tex] into the expression:
[tex]\[ 3z - 3 \quad \text{with} \quad z = 7 \][/tex]
2. Replace [tex]\( z \)[/tex] with 7:
[tex]\[ 3(7) - 3 \][/tex]
3. Perform the multiplication:
[tex]\[ 3 \times 7 = 21 \][/tex]
4. Subtract 3 from the product:
[tex]\[ 21 - 3 = 18 \][/tex]
Therefore, the value of the expression [tex]\( 3z - 3 \)[/tex] when [tex]\( z = 7 \)[/tex] is [tex]\(\boxed{18}\)[/tex].
1. Substitute the value of [tex]\( z \)[/tex] into the expression:
[tex]\[ 3z - 3 \quad \text{with} \quad z = 7 \][/tex]
2. Replace [tex]\( z \)[/tex] with 7:
[tex]\[ 3(7) - 3 \][/tex]
3. Perform the multiplication:
[tex]\[ 3 \times 7 = 21 \][/tex]
4. Subtract 3 from the product:
[tex]\[ 21 - 3 = 18 \][/tex]
Therefore, the value of the expression [tex]\( 3z - 3 \)[/tex] when [tex]\( z = 7 \)[/tex] is [tex]\(\boxed{18}\)[/tex].
The answer is 18
Plug in 7 for z: 3(7) - 3
Then multiply: 21 - 3
Then subtract: 21 - 3 = 18
Therefore the answer is 18
Plug in 7 for z: 3(7) - 3
Then multiply: 21 - 3
Then subtract: 21 - 3 = 18
Therefore the answer is 18