Example:
[tex]\[ -3x(4x+1) + 2(4x+1) = (4x+1)(3x+2) \][/tex]
- Factor out [tex]\((4x+1)\)[/tex] and write the numbers that remain [tex]\((3x+2)\)[/tex].
- Rewrite as [tex]\((4x+1)(3x+2)\)[/tex].

1. [tex]\(2x(5x+3) + 7(5x+3)\)[/tex]
2. [tex]\(8x(x+1) + 2(x+1)\)[/tex]
3. [tex]\(6x(x-10) - 1(x-10)\)[/tex]
4. [tex]\(1x(3x+4) + 5(3x+4)\)[/tex]
5. [tex]\(3x(8x+3) - 4(8x+3)\)[/tex]
6. [tex]\(5x(2x+6) + 2(2x+6)\)[/tex]
7. [tex]\(7x(-5x+2) - 13(-5x+2)\)[/tex]
8. [tex]\(-4x(12x+3) + 3(12x+3)\)[/tex]



Answer :

Let's solve these expressions step-by-step by factoring out the common terms and writing the simplified results:

1. Expression: [tex]\( 2x(5x + 3) + 7(5x + 3) \)[/tex]
- Factor out the common term [tex]\( (5x + 3) \)[/tex].
- The remaining terms are [tex]\( 2x \)[/tex] and [tex]\( 7 \)[/tex].
- Hence, rewrite as [tex]\( (2x + 7)(5x + 3) \)[/tex].

2. Expression: [tex]\( 8x(x + 1) + 2(x + 1) \)[/tex]
- Factor out the common term [tex]\( (x + 1) \)[/tex].
- The remaining terms are [tex]\( 8x \)[/tex] and [tex]\( 2 \)[/tex].
- Hence, rewrite as [tex]\( 2(x + 1)(4x + 1) \)[/tex].

3. Expression: [tex]\( 6x(x - 10) - 1(x - 10) \)[/tex]
- Factor out the common term [tex]\( (x - 10) \)[/tex].
- The remaining terms are [tex]\( 6x \)[/tex] and [tex]\( -1 \)[/tex].
- Hence, rewrite as [tex]\( (x - 10)(6x - 1) \)[/tex].

4. Expression: [tex]\( 1x(3x + 4) + 5(3x + 4) \)[/tex]
- Factor out the common term [tex]\( (3x + 4) \)[/tex].
- The remaining terms are [tex]\( 1x \)[/tex] and [tex]\( 5 \)[/tex].
- Hence, rewrite as [tex]\( (x + 5)(3x + 4) \)[/tex].

5. Expression: [tex]\( 3x(8x + 3) - 4(8x + 3) \)[/tex]
- Factor out the common term [tex]\( (8x + 3) \)[/tex].
- The remaining terms are [tex]\( 3x \)[/tex] and [tex]\( -4 \)[/tex].
- Hence, rewrite as [tex]\( (3x - 4)(8x + 3) \)[/tex].

6. Expression: [tex]\( 5x(2x + 6) + 2(2x + 6) \)[/tex]
- Factor out the common term [tex]\( (2x + 6) \)[/tex].
- The remaining terms are [tex]\( 5x \)[/tex] and [tex]\( 2 \)[/tex].
- Hence, rewrite as [tex]\( 2(x + 3)(5x + 2) \)[/tex].

7. Expression: [tex]\( 7x(-5x + 2) - 13(-5x + 2) \)[/tex]
- Factor out the common term [tex]\( (-5x + 2) \)[/tex].
- The remaining terms are [tex]\( 7x \)[/tex] and [tex]\( -13 \)[/tex].
- Hence, rewrite as [tex]\( -(5x - 2)(7x - 13) \)[/tex].

8. Expression (provided with a mistake): [tex]\( -4x(12x + 3) + 3(12x + \)[/tex]
- This seems incomplete and possibly contains a typographical error. Therefore, we cannot solve it without additional information.