Which expression is the simplest form of [tex]-\left(4x^3 + x^2\right) + 2\left(x^3 - 3x^2\right)[/tex]?

A. [tex]-6x^3 - 2x^2[/tex]
B. [tex]-2x^3 - 5x^2[/tex]
C. [tex]-2x^3 - 7x^2[/tex]
D. [tex]-6x^3 - 6x^2[/tex]



Answer :

Let's simplify the given expression step by step.

We start with the expression:

[tex]\[ -\left(4x^3 + x^2\right) + 2\left(x^3 - 3x^2\right) \][/tex]

First, we'll distribute the negative sign inside the first parenthesis:

[tex]\[ -(4x^3 + x^2) = -4x^3 - x^2 \][/tex]

Next, we'll distribute the 2 inside the second parenthesis:

[tex]\[ 2(x^3 - 3x^2) = 2x^3 - 6x^2 \][/tex]

Now, we combine the two results:

[tex]\[ -4x^3 - x^2 + 2x^3 - 6x^2 \][/tex]

To simplify, we'll combine the like terms. Group the [tex]\(x^3\)[/tex] terms together and the [tex]\(x^2\)[/tex] terms together:

[tex]\[ (-4x^3 + 2x^3) + (-x^2 - 6x^2) \][/tex]

Compute the sums for each group of like terms:

[tex]\[ -4x^3 + 2x^3 = -2x^3 \][/tex]

[tex]\[ -x^2 - 6x^2 = -7x^2 \][/tex]

Therefore, the simplest form of the given expression is:

[tex]\[ -2x^3 - 7x^2 \][/tex]

So the correct answer is:

[tex]\[ \boxed{-2x^3 - 7x^2} \][/tex]

Thus, the correct option is:

[tex]\[ \boxed{C} \][/tex]