Consider the following:

[tex]\[ u = \langle -2, 2 \rangle, \quad v = \langle 1, -1 \rangle \][/tex]

(a) Find [tex]\( u \cdot v \)[/tex].
[tex]\[ u \cdot v = \square \][/tex]

(b) Find the angle between [tex]\( u \)[/tex] and [tex]\( v \)[/tex] to the nearest degree.
[tex]\[ \theta = \square \][/tex]



Answer :

Certainly! Let's work through the problem step-by-step.

### Part (a): Finding the Dot Product [tex]\( u \cdot v \)[/tex]

Given vectors [tex]\( u = \langle -2, 2 \rangle \)[/tex] and [tex]\( v = \langle 1, -1 \rangle \)[/tex], the dot product [tex]\( u \cdot v \)[/tex] is calculated as follows:

[tex]\[ u \cdot v = u_1 \cdot v_1 + u_2 \cdot v_2 \][/tex]

Substituting the values:

[tex]\[ u \cdot v = (-2) \cdot 1 + 2 \cdot (-1) \][/tex]

Calculating each term:

[tex]\[ (-2) \cdot 1 = -2 \][/tex]
[tex]\[ 2 \cdot (-1) = -2 \][/tex]

Adding them together:

[tex]\[ u \cdot v = -2 + (-2) = -4 \][/tex]

So, the dot product [tex]\( u \cdot v \)[/tex] is [tex]\(-4\)[/tex].

[tex]\[ u \cdot v = -4 \][/tex]

### Part (b): Finding the Angle Between [tex]\( u \)[/tex] and [tex]\( v \)[/tex]

To find the angle [tex]\( \theta \)[/tex] between vectors [tex]\( u \)[/tex] and [tex]\( v \)[/tex], we use the formula involving the dot product and magnitudes:

[tex]\[ \cos(\theta) = \frac{u \cdot v}{\|u\| \|v\|} \][/tex]

First, we calculate the magnitudes of [tex]\( u \)[/tex] and [tex]\( v \)[/tex]:

For vector [tex]\( u \)[/tex]:

[tex]\[ \|u\| = \sqrt{u_1^2 + u_2^2} = \sqrt{(-2)^2 + 2^2} = \sqrt{4 + 4} = \sqrt{8} = 2\sqrt{2} \][/tex]

For vector [tex]\( v \)[/tex]:

[tex]\[ \|v\| = \sqrt{v_1^2 + v_2^2} = \sqrt{1^2 + (-1)^2} = \sqrt{1 + 1} = \sqrt{2} \][/tex]

Substitute these magnitudes and the dot product into the cosine formula:

[tex]\[ \cos(\theta) = \frac{-4}{(2\sqrt{2})(\sqrt{2})} \][/tex]

Simplify the denominator:

[tex]\[ (2\sqrt{2})(\sqrt{2}) = 2 \cdot 2 = 4 \][/tex]

So, we have:

[tex]\[ \cos(\theta) = \frac{-4}{4} = -1 \][/tex]

To find [tex]\( \theta \)[/tex], we take the inverse cosine (arccos) of [tex]\(-1\)[/tex]:

[tex]\[ \theta = \arccos(-1) \][/tex]

The angle whose cosine is [tex]\(-1\)[/tex] is [tex]\( 180^\circ \)[/tex]:

[tex]\[ \theta = 180^\circ \][/tex]

So, the angle between [tex]\( u \)[/tex] and [tex]\( v \)[/tex] to the nearest degree is [tex]\( 180^\circ \)[/tex].

[tex]\[ \theta = 180^\circ \][/tex]

In summary:

(a) The dot product [tex]\( u \cdot v \)[/tex] is [tex]\(-4\)[/tex].

(b) The angle between [tex]\( u \)[/tex] and [tex]\( v \)[/tex] is [tex]\( 180^\circ \)[/tex].