Answer :
Certainly! Let's work through the problem step-by-step.
### Part (a): Finding the Dot Product [tex]\( u \cdot v \)[/tex]
Given vectors [tex]\( u = \langle -2, 2 \rangle \)[/tex] and [tex]\( v = \langle 1, -1 \rangle \)[/tex], the dot product [tex]\( u \cdot v \)[/tex] is calculated as follows:
[tex]\[ u \cdot v = u_1 \cdot v_1 + u_2 \cdot v_2 \][/tex]
Substituting the values:
[tex]\[ u \cdot v = (-2) \cdot 1 + 2 \cdot (-1) \][/tex]
Calculating each term:
[tex]\[ (-2) \cdot 1 = -2 \][/tex]
[tex]\[ 2 \cdot (-1) = -2 \][/tex]
Adding them together:
[tex]\[ u \cdot v = -2 + (-2) = -4 \][/tex]
So, the dot product [tex]\( u \cdot v \)[/tex] is [tex]\(-4\)[/tex].
[tex]\[ u \cdot v = -4 \][/tex]
### Part (b): Finding the Angle Between [tex]\( u \)[/tex] and [tex]\( v \)[/tex]
To find the angle [tex]\( \theta \)[/tex] between vectors [tex]\( u \)[/tex] and [tex]\( v \)[/tex], we use the formula involving the dot product and magnitudes:
[tex]\[ \cos(\theta) = \frac{u \cdot v}{\|u\| \|v\|} \][/tex]
First, we calculate the magnitudes of [tex]\( u \)[/tex] and [tex]\( v \)[/tex]:
For vector [tex]\( u \)[/tex]:
[tex]\[ \|u\| = \sqrt{u_1^2 + u_2^2} = \sqrt{(-2)^2 + 2^2} = \sqrt{4 + 4} = \sqrt{8} = 2\sqrt{2} \][/tex]
For vector [tex]\( v \)[/tex]:
[tex]\[ \|v\| = \sqrt{v_1^2 + v_2^2} = \sqrt{1^2 + (-1)^2} = \sqrt{1 + 1} = \sqrt{2} \][/tex]
Substitute these magnitudes and the dot product into the cosine formula:
[tex]\[ \cos(\theta) = \frac{-4}{(2\sqrt{2})(\sqrt{2})} \][/tex]
Simplify the denominator:
[tex]\[ (2\sqrt{2})(\sqrt{2}) = 2 \cdot 2 = 4 \][/tex]
So, we have:
[tex]\[ \cos(\theta) = \frac{-4}{4} = -1 \][/tex]
To find [tex]\( \theta \)[/tex], we take the inverse cosine (arccos) of [tex]\(-1\)[/tex]:
[tex]\[ \theta = \arccos(-1) \][/tex]
The angle whose cosine is [tex]\(-1\)[/tex] is [tex]\( 180^\circ \)[/tex]:
[tex]\[ \theta = 180^\circ \][/tex]
So, the angle between [tex]\( u \)[/tex] and [tex]\( v \)[/tex] to the nearest degree is [tex]\( 180^\circ \)[/tex].
[tex]\[ \theta = 180^\circ \][/tex]
In summary:
(a) The dot product [tex]\( u \cdot v \)[/tex] is [tex]\(-4\)[/tex].
(b) The angle between [tex]\( u \)[/tex] and [tex]\( v \)[/tex] is [tex]\( 180^\circ \)[/tex].
### Part (a): Finding the Dot Product [tex]\( u \cdot v \)[/tex]
Given vectors [tex]\( u = \langle -2, 2 \rangle \)[/tex] and [tex]\( v = \langle 1, -1 \rangle \)[/tex], the dot product [tex]\( u \cdot v \)[/tex] is calculated as follows:
[tex]\[ u \cdot v = u_1 \cdot v_1 + u_2 \cdot v_2 \][/tex]
Substituting the values:
[tex]\[ u \cdot v = (-2) \cdot 1 + 2 \cdot (-1) \][/tex]
Calculating each term:
[tex]\[ (-2) \cdot 1 = -2 \][/tex]
[tex]\[ 2 \cdot (-1) = -2 \][/tex]
Adding them together:
[tex]\[ u \cdot v = -2 + (-2) = -4 \][/tex]
So, the dot product [tex]\( u \cdot v \)[/tex] is [tex]\(-4\)[/tex].
[tex]\[ u \cdot v = -4 \][/tex]
### Part (b): Finding the Angle Between [tex]\( u \)[/tex] and [tex]\( v \)[/tex]
To find the angle [tex]\( \theta \)[/tex] between vectors [tex]\( u \)[/tex] and [tex]\( v \)[/tex], we use the formula involving the dot product and magnitudes:
[tex]\[ \cos(\theta) = \frac{u \cdot v}{\|u\| \|v\|} \][/tex]
First, we calculate the magnitudes of [tex]\( u \)[/tex] and [tex]\( v \)[/tex]:
For vector [tex]\( u \)[/tex]:
[tex]\[ \|u\| = \sqrt{u_1^2 + u_2^2} = \sqrt{(-2)^2 + 2^2} = \sqrt{4 + 4} = \sqrt{8} = 2\sqrt{2} \][/tex]
For vector [tex]\( v \)[/tex]:
[tex]\[ \|v\| = \sqrt{v_1^2 + v_2^2} = \sqrt{1^2 + (-1)^2} = \sqrt{1 + 1} = \sqrt{2} \][/tex]
Substitute these magnitudes and the dot product into the cosine formula:
[tex]\[ \cos(\theta) = \frac{-4}{(2\sqrt{2})(\sqrt{2})} \][/tex]
Simplify the denominator:
[tex]\[ (2\sqrt{2})(\sqrt{2}) = 2 \cdot 2 = 4 \][/tex]
So, we have:
[tex]\[ \cos(\theta) = \frac{-4}{4} = -1 \][/tex]
To find [tex]\( \theta \)[/tex], we take the inverse cosine (arccos) of [tex]\(-1\)[/tex]:
[tex]\[ \theta = \arccos(-1) \][/tex]
The angle whose cosine is [tex]\(-1\)[/tex] is [tex]\( 180^\circ \)[/tex]:
[tex]\[ \theta = 180^\circ \][/tex]
So, the angle between [tex]\( u \)[/tex] and [tex]\( v \)[/tex] to the nearest degree is [tex]\( 180^\circ \)[/tex].
[tex]\[ \theta = 180^\circ \][/tex]
In summary:
(a) The dot product [tex]\( u \cdot v \)[/tex] is [tex]\(-4\)[/tex].
(b) The angle between [tex]\( u \)[/tex] and [tex]\( v \)[/tex] is [tex]\( 180^\circ \)[/tex].