Answer :
Let's use the formula [tex]\( d = r \times t \)[/tex], where [tex]\( d \)[/tex] is the distance, [tex]\( r \)[/tex] is the rate (or speed), and [tex]\( t \)[/tex] is the time. We'll evaluate each of the given statements to determine their correctness.
### Statement 1:
If [tex]\( r = 5 \)[/tex] and [tex]\( t = 3 \)[/tex], then [tex]\( d = 15 \)[/tex].
Calculating the distance:
[tex]\[ d = r \times t = 5 \times 3 = 15 \][/tex]
This statement is true.
### Statement 2:
If [tex]\( r = 3 \)[/tex] and [tex]\( t = 5 \)[/tex], then [tex]\( d = 8 \)[/tex].
Calculating the distance:
[tex]\[ d = r \times t = 3 \times 5 = 15 \][/tex]
This statement claims that [tex]\( d = 8 \)[/tex], but our calculation shows that [tex]\( d = 15 \)[/tex]. Therefore, this statement is not true.
### Statement 3:
If [tex]\( r = 3 \)[/tex] and [tex]\( t = 4 \)[/tex], then [tex]\( d = 12 \)[/tex].
Calculating the distance:
[tex]\[ d = r \times t = 3 \times 4 = 12 \][/tex]
This statement is true.
### Statement 4:
If [tex]\( r = 4 \)[/tex] and [tex]\( t = 2 \)[/tex], then [tex]\( d = 8 \)[/tex].
Calculating the distance:
[tex]\[ d = r \times t = 4 \times 2 = 8 \][/tex]
This statement is true.
### Conclusion
Based on our calculations, the statement that is not true is:
- If [tex]\( r = 3 \)[/tex] and [tex]\( t = 5 \)[/tex], then [tex]\( d = 8 \)[/tex].
We have verified that the correct distance should be [tex]\( d = 15 \)[/tex], not [tex]\( 8 \)[/tex].
### Statement 1:
If [tex]\( r = 5 \)[/tex] and [tex]\( t = 3 \)[/tex], then [tex]\( d = 15 \)[/tex].
Calculating the distance:
[tex]\[ d = r \times t = 5 \times 3 = 15 \][/tex]
This statement is true.
### Statement 2:
If [tex]\( r = 3 \)[/tex] and [tex]\( t = 5 \)[/tex], then [tex]\( d = 8 \)[/tex].
Calculating the distance:
[tex]\[ d = r \times t = 3 \times 5 = 15 \][/tex]
This statement claims that [tex]\( d = 8 \)[/tex], but our calculation shows that [tex]\( d = 15 \)[/tex]. Therefore, this statement is not true.
### Statement 3:
If [tex]\( r = 3 \)[/tex] and [tex]\( t = 4 \)[/tex], then [tex]\( d = 12 \)[/tex].
Calculating the distance:
[tex]\[ d = r \times t = 3 \times 4 = 12 \][/tex]
This statement is true.
### Statement 4:
If [tex]\( r = 4 \)[/tex] and [tex]\( t = 2 \)[/tex], then [tex]\( d = 8 \)[/tex].
Calculating the distance:
[tex]\[ d = r \times t = 4 \times 2 = 8 \][/tex]
This statement is true.
### Conclusion
Based on our calculations, the statement that is not true is:
- If [tex]\( r = 3 \)[/tex] and [tex]\( t = 5 \)[/tex], then [tex]\( d = 8 \)[/tex].
We have verified that the correct distance should be [tex]\( d = 15 \)[/tex], not [tex]\( 8 \)[/tex].