Heidi solved the equation [tex]3(x+4)+2=2+5(x-4)[/tex]. Her steps are below:

1. [tex]3x + 12 + 2 = 2 + 5x - 20[/tex]
2. [tex]3x + 14 = 5x - 18[/tex]
3. [tex]14 = 2x - 18[/tex]
4. [tex]32 = 2x[/tex]
5. [tex]16 = x[/tex]

Use the drop-downs to justify how Heidi arrived at each step.

Step 1: [tex]\square[/tex]

Step 2: [tex]\square[/tex]

Step 3: [tex]\square[/tex]

Step 4: [tex]\square[/tex]

Step 5: [tex]\square[/tex]



Answer :

Certainly! Let's break down Heidi's solution step by step, providing justification for each step:

Step 1:
Equation: [tex]\(3(x+4) + 2 = 2 + 5(x-4)\)[/tex]

Justification: Apply the distributive property
Here, Heidi distributed the multiplication over addition/subtraction in the parentheses:
[tex]\[ 3(x+4) \rightarrow 3x + 12 \][/tex]
[tex]\[ 5(x-4) \rightarrow 5x - 20 \][/tex]
Then she combined the results:
[tex]\[ 3x + 12 + 2 = 2 + 5x - 20 \][/tex]

Step 2:
Equation: [tex]\(3x + 14 = 5x - 18\)[/tex]

Justification: Combine like terms
Heidi combined the constants on each side of the equation:
[tex]\[ 3x + 12 + 2 \rightarrow 3x + 14 \][/tex]
[tex]\[ 2 + 5x - 20 \rightarrow 5x - 18 \][/tex]

Step 3:
Equation: [tex]\(14 = 2x - 18\)[/tex]

Justification: Move all variable terms to one side and constant terms to the other
Heidi subtracted [tex]\(3x\)[/tex] from both sides to move the variable terms to one side:
[tex]\[ 3x + 14 - 3x = 5x - 18 - 3x \][/tex]
Simplifying gave:
[tex]\[ 14 = 2x - 18 \][/tex]

Step 4:
Equation: [tex]\(32 = 2x\)[/tex]

Justification: Isolate the variable term
Heidi added [tex]\(18\)[/tex] to both sides to isolate the term containing [tex]\(x\)[/tex]:
[tex]\[ 14 + 18 = 2x - 18 + 18 \][/tex]
Simplifying gave:
[tex]\[ 32 = 2x \][/tex]

Step 5:
Equation: [tex]\(16 = x\)[/tex]

Justification: Solve for [tex]\(x\)[/tex] by dividing both sides by 2
Heidi divided both sides of the equation by [tex]\(2\)[/tex]:
[tex]\[ \frac{32}{2} = \frac{2x}{2} \][/tex]
Simplifying gave:
[tex]\[ 16 = x \][/tex]

In summary, Heidi solved the equation step-by-step using the distributive property, combining like terms, moving variable and constant terms appropriately, isolating the variable term, and finally solving for [tex]\(x\)[/tex].