Answer :
Let's solve each of these problems step-by-step:
8. [tex]\((-24) \div 3\)[/tex]
To divide [tex]\(-24\)[/tex] by [tex]\(3\)[/tex], you simply perform the division:
[tex]\[ -24 \div 3 = -8.0 \][/tex]
So, [tex]\((-24) \div 3\)[/tex] equals [tex]\(-8.0\)[/tex].
9. [tex]\(\frac{1}{7} + \frac{3}{7}\)[/tex]
To add fractions with the same denominator, you add the numerators and keep the denominator the same:
[tex]\[ \frac{1}{7} + \frac{3}{7} = \frac{1 + 3}{7} = \frac{4}{7} \][/tex]
So, [tex]\(\frac{1}{7} + \frac{3}{7}\)[/tex] equals approximately [tex]\(0.5714\)[/tex].
10. [tex]\(-\frac{3}{4} - \frac{2}{3}\)[/tex]
First, find a common denominator, which in this case is [tex]\(12\)[/tex]:
[tex]\[ -\frac{3}{4} = -\frac{3 \times 3}{4 \times 3} = -\frac{9}{12} \][/tex]
[tex]\[ -\frac{2}{3} = -\frac{2 \times 4}{3 \times 4} = -\frac{8}{12} \][/tex]
Next, add the fractions:
[tex]\[ -\frac{9}{12} - \frac{8}{12} = -\frac{9 + 8}{12} = -\frac{17}{12} \][/tex]
So, [tex]\(-\frac{3}{4} - \frac{2}{3}\)[/tex] equals approximately [tex]\(-1.4167\)[/tex].
11. [tex]\(-0.75 + 0.5\)[/tex]
Add the two numbers:
[tex]\[ -0.75 + 0.5 = -0.25 \][/tex]
So, [tex]\(-0.75 + 0.5\)[/tex] equals [tex]\(-0.25\)[/tex].
12. [tex]\(\left(-\frac{2}{3}\right) \times \left(-\frac{5}{7}\right)\)[/tex]
Multiply the numerators and the denominators:
[tex]\[ \left(-\frac{2}{3}\right) \times \left(-\frac{5}{7}\right) = \frac{(-2) \times (-5)}{3 \times 7} = \frac{10}{21} \][/tex]
So, [tex]\(\left(-\frac{2}{3}\right) \times \left(-\frac{5}{7}\right\)[/tex] equals approximately [tex]\(0.4762\)[/tex].
13. [tex]\(-3.2 \times 1.3\)[/tex]
Perform the multiplication:
[tex]\[ -3.2 \times 1.3 = -4.16 \][/tex]
So, [tex]\(-3.2 \times 1.3\)[/tex] equals [tex]\(-4.16\)[/tex].
14. [tex]\(-4.8 \div (-6)\)[/tex]
To divide [tex]\(-4.8\)[/tex] by [tex]\(-6\)[/tex], you perform the division:
[tex]\[ -4.8 \div (-6) = 0.8 \][/tex]
So, [tex]\(-4.8 \div (-6)\)[/tex] equals [tex]\(0.8\)[/tex].
8. [tex]\((-24) \div 3\)[/tex]
To divide [tex]\(-24\)[/tex] by [tex]\(3\)[/tex], you simply perform the division:
[tex]\[ -24 \div 3 = -8.0 \][/tex]
So, [tex]\((-24) \div 3\)[/tex] equals [tex]\(-8.0\)[/tex].
9. [tex]\(\frac{1}{7} + \frac{3}{7}\)[/tex]
To add fractions with the same denominator, you add the numerators and keep the denominator the same:
[tex]\[ \frac{1}{7} + \frac{3}{7} = \frac{1 + 3}{7} = \frac{4}{7} \][/tex]
So, [tex]\(\frac{1}{7} + \frac{3}{7}\)[/tex] equals approximately [tex]\(0.5714\)[/tex].
10. [tex]\(-\frac{3}{4} - \frac{2}{3}\)[/tex]
First, find a common denominator, which in this case is [tex]\(12\)[/tex]:
[tex]\[ -\frac{3}{4} = -\frac{3 \times 3}{4 \times 3} = -\frac{9}{12} \][/tex]
[tex]\[ -\frac{2}{3} = -\frac{2 \times 4}{3 \times 4} = -\frac{8}{12} \][/tex]
Next, add the fractions:
[tex]\[ -\frac{9}{12} - \frac{8}{12} = -\frac{9 + 8}{12} = -\frac{17}{12} \][/tex]
So, [tex]\(-\frac{3}{4} - \frac{2}{3}\)[/tex] equals approximately [tex]\(-1.4167\)[/tex].
11. [tex]\(-0.75 + 0.5\)[/tex]
Add the two numbers:
[tex]\[ -0.75 + 0.5 = -0.25 \][/tex]
So, [tex]\(-0.75 + 0.5\)[/tex] equals [tex]\(-0.25\)[/tex].
12. [tex]\(\left(-\frac{2}{3}\right) \times \left(-\frac{5}{7}\right)\)[/tex]
Multiply the numerators and the denominators:
[tex]\[ \left(-\frac{2}{3}\right) \times \left(-\frac{5}{7}\right) = \frac{(-2) \times (-5)}{3 \times 7} = \frac{10}{21} \][/tex]
So, [tex]\(\left(-\frac{2}{3}\right) \times \left(-\frac{5}{7}\right\)[/tex] equals approximately [tex]\(0.4762\)[/tex].
13. [tex]\(-3.2 \times 1.3\)[/tex]
Perform the multiplication:
[tex]\[ -3.2 \times 1.3 = -4.16 \][/tex]
So, [tex]\(-3.2 \times 1.3\)[/tex] equals [tex]\(-4.16\)[/tex].
14. [tex]\(-4.8 \div (-6)\)[/tex]
To divide [tex]\(-4.8\)[/tex] by [tex]\(-6\)[/tex], you perform the division:
[tex]\[ -4.8 \div (-6) = 0.8 \][/tex]
So, [tex]\(-4.8 \div (-6)\)[/tex] equals [tex]\(0.8\)[/tex].