What is the slope of a line that passes through the points [tex]\left(-1, \frac{1}{3}\right)[/tex] and [tex]\left(0,-\frac{1}{3}\right)[/tex] in the [tex]xy[/tex]-plane?

Choose one answer:

(A) [tex]-\frac{2}{3}[/tex]

(B) [tex]-\frac{1}{3}[/tex]

(C) 0

(D) [tex]\frac{2}{3}[/tex]



Answer :

To determine the slope of a line that passes through two points [tex]\((-1, \frac{1}{3})\)[/tex] and [tex]\( (0, -\frac{1}{3}) \)[/tex], we use the formula for the slope [tex]\((m)\)[/tex] of a line passing through points [tex]\((x_1, y_1)\)[/tex] and [tex]\((x_2, y_2)\)[/tex]:

[tex]\[ m = \frac{y_2 - y_1}{x_2 - x_1} \][/tex]

Substitute the given coordinates into the formula:

[tex]\[ x_1 = -1, \quad y_1 = \frac{1}{3} \][/tex]
[tex]\[ x_2 = 0, \quad y_2 = -\frac{1}{3} \][/tex]

Now, plug these values into the slope formula:

[tex]\[ m = \frac{y_2 - y_1}{x_2 - x_1} = \frac{-\frac{1}{3} - \frac{1}{3}}{0 - (-1)} \][/tex]

Simplify the differences in the numerator and the denominator:

[tex]\[ m = \frac{-\frac{1}{3} - \frac{1}{3}}{0 + 1} = \frac{-\frac{1}{3} - \frac{1}{3}}{1} = \frac{-\frac{2}{3}}{1} \][/tex]

Since dividing by 1 does not change the value, we have:

[tex]\[ m = -\frac{2}{3} \][/tex]

Hence, the slope of the line passing through the points [tex]\((-1, \frac{1}{3})\)[/tex] and [tex]\( (0, -\frac{1}{3})\)[/tex] is [tex]\(-\frac{2}{3}\)[/tex]. Therefore, the correct answer is:

(A) [tex]\(-\frac{2}{3}\)[/tex]