Eli's family starts with 2 whole pizzas. They eat [tex]$1 \frac{3}{8}$[/tex] pizzas. How much pizza do they have left?

A. [tex]$\frac{3}{8}$[/tex] pizza
B. [tex][tex]$\frac{5}{8}$[/tex][/tex] pizza
C. [tex]$1 \frac{3}{8}$[/tex] pizzas
D. [tex]$3 \frac{3}{8}$[/tex] pizzas



Answer :

Let's solve the problem step-by-step.

1. Understanding the Problem:
- Eli's family starts with 2 whole pizzas.
- They consume [tex]\(1 \frac{3}{8}\)[/tex] pizzas.
- We need to find out how much pizza is left.

2. Convert Mixed Number to Improper Fraction:
- The family consumed [tex]\(1 \frac{3}{8}\)[/tex] pizzas.
- Converting [tex]\(1 \frac{3}{8}\)[/tex] to an improper fraction:
[tex]\[ 1 \frac{3}{8} = 1 + \frac{3}{8} = \frac{8}{8} + \frac{3}{8} = \frac{11}{8} \][/tex]
- Therefore, [tex]\(1 \frac{3}{8}\)[/tex] pizzas is equivalent to [tex]\(\frac{11}{8}\)[/tex].

3. Subtract the Consumed Pizza from the Starting Amount:
- Eli's family starts with 2 whole pizzas. In fraction form, 2 whole pizzas is:
[tex]\[ 2 = \frac{2}{1} = \frac{16}{8} \][/tex]
- We now subtract the consumed amount from the starting amount:
[tex]\[ \frac{16}{8} - \frac{11}{8} \][/tex]
- To subtract these fractions, we subtract the numerators while keeping the common denominator:
[tex]\[ \frac{16 - 11}{8} = \frac{5}{8} \][/tex]

So, the amount of pizza left is [tex]\(\frac{5}{8}\)[/tex] pizza.

Answer:
(B) [tex]\(\frac{5}{8}\)[/tex] pizza