To find the value of [tex]\( x \)[/tex], you can use the trigonometric expression:
[tex]\[ x = \frac{a}{\tan(b)} \][/tex]
In this specific problem, the values of [tex]\( a \)[/tex] and [tex]\( b \)[/tex] are as follows:
- [tex]\( a = 5 \)[/tex]
- [tex]\( b = \frac{\pi}{4} \)[/tex]
Therefore, substituting these values in, the expression becomes:
[tex]\[ x = \frac{5}{\tan\left(\frac{\pi}{4}\right)} \][/tex]
Given that [tex]\( \tan\left(\frac{\pi}{4}\right) = 1 \)[/tex], the expression simplifies to:
[tex]\[ x = \frac{5}{1} \][/tex]
Thus, the value of [tex]\( x \)[/tex] is:
[tex]\[ x = 5.000000000000001 \][/tex]