Which of the following is equivalent to the expression [tex]$(2i + 1)(5 - i)$[/tex]?

A. [tex]$3 + 9i$[/tex]
B. [tex][tex]$3 - 9i$[/tex][/tex]
C. [tex]$7 + 9i$[/tex]
D. [tex]$7 - 9i$[/tex]



Answer :

To solve the expression [tex]\((2 + i)(5 - i)\)[/tex], let's do it step-by-step.

Given the complex numbers: [tex]\(2 + i\)[/tex] and [tex]\(5 - i\)[/tex].

We need to multiply these two complex numbers together:

[tex]\[ (2 + i)(5 - i) \][/tex]

Let's expand the expression using the distributive property (also known as the FOIL method for binomials):

[tex]\[ (2 + i)(5 - i) = 2 \cdot 5 + 2 \cdot (-i) + i \cdot 5 + i \cdot (-i) \][/tex]

Compute each term individually:
- [tex]\(2 \cdot 5 = 10\)[/tex]
- [tex]\(2 \cdot (-i) = -2i\)[/tex]
- [tex]\(i \cdot 5 = 5i\)[/tex]
- [tex]\(i \cdot (-i) = -i^2\)[/tex]

Recall that [tex]\(i^2 = -1\)[/tex], so:

[tex]\[ -i^2 = -(-1) = 1 \][/tex]

Now substitute back into our expanded expression:

[tex]\[ 10 - 2i + 5i + 1 \][/tex]

Combine the real and imaginary parts separately:

- Real parts: [tex]\(10 + 1 = 11\)[/tex]
- Imaginary parts: [tex]\(-2i + 5i = 3i\)[/tex]

So the result of the expression is:

[tex]\[ 11 + 3i \][/tex]

Therefore, the equivalent expression is:

A. [tex]\(11 + 3i\)[/tex]