Complete the Truth Table for the inverse

[tex]\[ \sim P \rightarrow \sim Q \][/tex]

\begin{tabular}{|c|c|c|c|c|}
\hline
[tex]$P$[/tex] & [tex]$Q$[/tex] & [tex]$\sim P$[/tex] & [tex]$\sim Q$[/tex] & [tex]$\sim P \rightarrow \sim Q$[/tex] \\
\hline
T & T & F & F & \\
\hline
T & F & F & T & \\
\hline
F & T & T & F & \\
\hline
F & F & T & T & \\
\hline
\end{tabular}



Answer :

Sure! Let's start by filling in the truth table step-by-step.

### Step 1: Fill in the Negation Columns

1. For [tex]\( P = T \)[/tex] (True) and [tex]\( Q = T \)[/tex] (True):
- [tex]\( \sim P \)[/tex] (not [tex]\( P \)[/tex]) is [tex]\( F \)[/tex] (False)
- [tex]\( \sim Q \)[/tex] (not [tex]\( Q \)[/tex]) is [tex]\( F \)[/tex] (False)

2. For [tex]\( P = T \)[/tex] (True) and [tex]\( Q = F \)[/tex] (False):
- [tex]\( \sim P \)[/tex] (not [tex]\( P \)[/tex]) is [tex]\( F \)[/tex] (False)
- [tex]\( \sim Q \)[/tex] (not [tex]\( Q \)[/tex]) is [tex]\( T \)[/tex] (True)

3. For [tex]\( P = F \)[/tex] (False) and [tex]\( Q = T \)[/tex] (True):
- [tex]\( \sim P \)[/tex] (not [tex]\( P \)[/tex]) is [tex]\( T \)[/tex] (True)
- [tex]\( \sim Q \)[/tex] (not [tex]\( Q \)[/tex]) is [tex]\( F \)[/tex] (False)

4. For [tex]\( P = F \)[/tex] (False) and [tex]\( Q = F \)[/tex] (False):
- [tex]\( \sim P \)[/tex] (not [tex]\( P \)[/tex]) is [tex]\( T \)[/tex] (True)
- [tex]\( \sim Q \)[/tex] (not [tex]\( Q \)[/tex]) is [tex]\( T \)[/tex] (True)

Let's update the truth table with these values:
[tex]\[ \begin{tabular}{|l|l|l|l|l|} \hline $P$ & $Q$ & $\sim P$ & $\sim Q$ & $\sim P \rightarrow \sim Q$ \\ \hline $T$ & $T$ & $F$ & $F$ & \\ \hline $T$ & $F$ & $F$ & $T$ & \\ \hline $F$ & $T$ & $T$ & $F$ & \\ \hline $F$ & $F$ & $T$ & $T$ & \\ \hline \end{tabular} \][/tex]

### Step 2: Compute the Implication ([tex]\( \sim P \rightarrow \sim Q \)[/tex])

An implication [tex]\( p \rightarrow q \)[/tex] is False only if [tex]\( p \)[/tex] is True and [tex]\( q \)[/tex] is False; otherwise, it is True.

1. For [tex]\( \sim P = F \)[/tex] and [tex]\( \sim Q = F \)[/tex]:
- The implication [tex]\( F \rightarrow F \)[/tex] is [tex]\( T \)[/tex] (True).

2. For [tex]\( \sim P = F \)[/tex] and [tex]\( \sim Q = T \)[/tex]:
- The implication [tex]\( F \rightarrow T \)[/tex] is [tex]\( T \)[/tex] (True).

3. For [tex]\( \sim P = T \)[/tex] and [tex]\( \sim Q = F \)[/tex]:
- The implication [tex]\( T \rightarrow F \)[/tex] is [tex]\( F \)[/tex] (False).

4. For [tex]\( \sim P = T \)[/tex] and [tex]\( \sim Q = T \)[/tex]:
- The implication [tex]\( T \rightarrow T \)[/tex] is [tex]\( T \)[/tex] (True).

Let's update the truth table with these values:
[tex]\[ \begin{tabular}{|l|l|l|l|l|} \hline $P$ & $Q$ & $\sim P$ & $\sim Q$ & $\sim P \rightarrow \sim Q$ \\ \hline $T$ & $T$ & $F$ & $F$ & $T$ \\ \hline $T$ & $F$ & $F$ & $T$ & $T$ \\ \hline $F$ & $T$ & $T$ & $F$ & $F$ \\ \hline $F$ & $F$ & $T$ & $T$ & $T$ \\ \hline \end{tabular} \][/tex]

So, the completed truth table is:
[tex]\[ \begin{tabular}{|l|l|l|l|l|} \hline $P$ & $Q$ & $\sim P$ & $\sim Q$ & $\sim P \rightarrow \sim Q$ \\ \hline $T$ & $T$ & $F$ & $F$ & $T$ \\ \hline $T$ & $F$ & $F$ & $T$ & $T$ \\ \hline $F$ & $T$ & $T$ & $F$ & $F$ \\ \hline $F$ & $F$ & $T$ & $T$ & $T$ \\ \hline \end{tabular} \][/tex]

This completes the truth table for the given logical expression [tex]\( \sim P \rightarrow \sim Q \)[/tex].