Answer :

Certainly! Let's break down the given expression and solve it step by step:

The expression we need to simplify is:
[tex]$\frac{15-[8-(2+5)]}{18-5^2}$[/tex]

1. Solve the innermost parentheses first:
[tex]\[ 2 + 5 = 7 \][/tex]

2. Substitute this result back into the expression:
[tex]\[ 8 - 7 \][/tex]

3. Solve the expression within the brackets:
[tex]\[ 8 - 7 = 1 \][/tex]

4. Substitute this back into the original expression:
[tex]\[ 15 - 1 \][/tex]

5. Solve the numerator:
[tex]\[ 15 - 1 = 14 \][/tex]

6. Now, address the denominator, starting with the exponentiation:
[tex]\[ 5^2 = 25 \][/tex]

7. Substitute this into the denominator expression:
[tex]\[ 18 - 25 \][/tex]

8. Solve the denominator:
[tex]\[ 18 - 25 = -7 \][/tex]

9. Finally, compute the overall fraction:
[tex]\[ \frac{14}{-7} = -2.0 \][/tex]

Putting it all together, the step-by-step solution to the expression is:
[tex]\[ \frac{15-[8-(2+5)]}{18-5^2} = \frac{14}{-7} = -2.0 \][/tex]

Thus, the final result is:
[tex]\[ -2.0 \][/tex]