Answer :

To solve the expression [tex]\(2x^2 - 5xy - y^3\)[/tex] using the given values [tex]\(x = -3\)[/tex] and [tex]\(y = -2\)[/tex], let us break it down into several steps:

1. Calculate the term [tex]\(2x^2\)[/tex]:
[tex]\[ x = -3 \\ x^2 = (-3)^2 = 9 \\ 2x^2 = 2 \times 9 = 18 \][/tex]
So, the value of [tex]\(2x^2\)[/tex] is 18.

2. Calculate the term [tex]\(-5xy\)[/tex]:
[tex]\[ x = -3 \quad \text{and} \quad y = -2 \\ xy = (-3) \times (-2) = 6 \\ -5xy = -5 \times 6 = -30 \][/tex]
So, the value of [tex]\(-5xy\)[/tex] is -30.

3. Calculate the term [tex]\(-y^3\)[/tex]:
[tex]\[ y = -2 \\ y^3 = (-2)^3 = -8 \\ -y^3 = -(-8) = 8 \][/tex]
So, the value of [tex]\(-y^3\)[/tex] is 8.

4. Combine all the calculated terms:
[tex]\[ 2x^2 - 5xy - y^3 = 18 - 30 + 8 \][/tex]

5. Perform the final addition and subtraction:
[tex]\[ 18 - 30 + 8 = -12 + 8 = -4 \][/tex]

Hence, the value of the expression [tex]\(2x^2 - 5xy - y^3\)[/tex] when [tex]\(x = -3\)[/tex] and [tex]\(y = -2\)[/tex] is [tex]\(\boxed{-4}\)[/tex].

The intermediate values are:
- The term [tex]\(2x^2\)[/tex] is 18.
- The term [tex]\(-5xy\)[/tex] is -30.
- The term [tex]\(-y^3\)[/tex] is 8.
- The result of the expression is -4.