Simplify: [tex]$-3(y+2)^2-5+6y$[/tex]

What is the simplified product in standard form?

[tex]\square y^2 + \square y + \square[/tex]



Answer :

To simplify the expression [tex]\(-3(y+2)^2 - 5 + 6y\)[/tex], you can follow these detailed steps:

1. Expand the squared binomial [tex]\((y + 2)^2\)[/tex] first:
[tex]\[ (y + 2)^2 = y^2 + 4y + 4 \][/tex]

2. Distribute [tex]\(-3\)[/tex] across the expanded binomial:
[tex]\[ -3(y^2 + 4y + 4) = -3y^2 - 12y - 12 \][/tex]

3. Combine the distributed terms with the rest of the expression:
[tex]\[ -3y^2 - 12y - 12 - 5 + 6y \][/tex]

4. Simplify the expression by combining like terms:
[tex]\[ -3y^2 - 12y + 6y - 12 - 5 \][/tex]
[tex]\[ -3y^2 - 6y - 17 \][/tex]

Thus, the simplified expression in standard form is:
[tex]\[ -3y^2 - 6y - 17 \][/tex]

So, filling in the blanks in the standard form [tex]\(\square y^2 + \square y + \square\)[/tex], we have:
[tex]\[ -3y^2 + (-6)y + (-17) \][/tex]

Hence, the answer is:
[tex]\[ -3, -6, -17 \][/tex]