Which answer choice is equivalent to the expression below?

[tex]-7(2+n)+\frac{1}{3}(-9-6n)[/tex]

A. [tex]-17-9n[/tex]
B. [tex]-14-12n[/tex]
C. [tex]11+5n[/tex]
D. [tex]14+2n[/tex]



Answer :

To solve the expression [tex]\(-7(2+n) + \frac{1}{3}(-9-6n)\)[/tex], we will simplify each part step-by-step.

Step 1: Simplify the first part: [tex]\( -7(2+n) \)[/tex]

Distribute [tex]\( -7 \)[/tex] to both terms inside the parenthesis:
[tex]\[ -7(2+n) = -7 \cdot 2 + (-7) \cdot n = -14 - 7n \][/tex]

Step 2: Simplify the second part: [tex]\(\frac{1}{3}(-9-6n)\)[/tex]

Distribute [tex]\(\frac{1}{3}\)[/tex] to both terms inside the parenthesis:
[tex]\[ \frac{1}{3}(-9-6n) = \frac{1}{3} \cdot (-9) + \frac{1}{3} \cdot (-6n) = -3 - 2n \][/tex]

Step 3: Combine the results of the two parts:

Now add [tex]\(-14 - 7n\)[/tex] and [tex]\(-3 - 2n\)[/tex]:
[tex]\[ -14 - 7n + (-3 - 2n) \][/tex]

Combine the like terms (constants with constants and coefficients of [tex]\(n\)[/tex] with coefficients of [tex]\(n\)[/tex]):
[tex]\[ -14 - 3 + (-7n - 2n) = -17 - 9n \][/tex]

Thus, the expression simplifies to:
[tex]\[ -17 - 9n \][/tex]

So the equivalent expression is:

[tex]\(-17 - 9n\)[/tex]

Therefore, the correct answer is [tex]\(\boxed{-17-9n}\)[/tex].